Preparation, Characterization, and Surface-Enhanced Raman Spectroscopy Activity of Spherical α-Fe2O3/Ag Core/Shell Nanoparticles


Article Preview

Spherical α-Fe2O3/Ag core/shell nanoparticles were prepared by reducing Ag(NH3)2+ with formaldehyde using the seeding method. 3- Aminopropyltriethoxysilane (APS) acts as a “bridge” to link between α-Fe2O3 core and Ag shell. The obtained nanoparticles were characterized by XRD, TEM, SEM, EDS, and Roman. The results show thatα-Fe2O3 cores are coated by Ag shell completely. The average size of α-Fe2O3/Ag nanoparticles is 95 nm and the thicknesses of Ag shell are 15nm in 3.7% HCHO and 1.0M AgNO3. The thickness of Ag shell can be tunable by changing reaction conditions, such as the concentration of AgNO3, reduction reaction rate. The surface-enhanced Raman scattering (SERS) effect of the core/shell particles are measured with Pyridine (Py) as molecule probe. SERS indicate that the Raman signals of Py adsorbed on α-Fe2O3/Ag nanoparticles exhibit large enhancement at 1010 and 1038 cm-1 respectively. And the intensity of signals is enhanced with the increase of the thickness of Ag shell. The uniform and rough surface of α-Fe2O3/Ag particles exhibits strong SERS activity in 3.7% HCHO and 1.0M AgNO3. The spherical α-Fe2O3/Ag core/shell nanoparticles exhibit SERS activity.



Advanced Materials Research (Volumes 152-153)

Edited by:

Zhengyi Jiang, Jingtao Han and Xianghua Liu




C. R. Wang et al., "Preparation, Characterization, and Surface-Enhanced Raman Spectroscopy Activity of Spherical α-Fe2O3/Ag Core/Shell Nanoparticles", Advanced Materials Research, Vols. 152-153, pp. 67-72, 2011

Online since:

October 2010




[1] P.P.C. Sartoratto , K.L. Caiado, R.C. Pedroza , S.W. da Silva , P.C. Morais, J. Alloy. Compd. 434–435 (2007), p.650.

[2] H. Yamada and Y. Yamamoto, Surf. Sci. 134 (1983), p.71.

[3] Y.S. Li, J. Raman Spectrosc. 25 (1994), p.795.

[4] A. Kudelski, W. Grochala, M. Janik-Czachor, J. Bukowska, A. Szummer, M. Dolata, J. Raman Spectrosc. 29 (1998).


[5] B.H. Loo, J. Electroanal. Chem. 136 (1982), p.209.

[6] Y.C. Liu, C. C. Yu, C. C. Wang, L.C. Juang, Chem. Phys. Lett. 420 (2006), p.245.

[7] S C Lin, S Y Chen, Y T Chen, S Y Cheng, J. Alloys Compd, 449 (2008), p.232.

[8] J F Li, Z L Yang, B Ren, G K Liu, P P Fang, Y X Jiang, D Y Wu, Z Q Tian, Langmuir, 22 (2006), p.10372.

[9] I-Im S Lim, Peter N Njoki, Hye-Young Park, Xin Wang, Lingyan Wang, Derrick Mott, Chuanjian Zhong, Nanotechnology 19 (2008), p.305102.


[10] Miguel Spuch-Calvar, Jorge Pérez-Juste, Luis M. Liz-Marzán, J. Colloid I nterf. Sci. 310 (2007), p.297.


[11] Baoliang Lv, Yao Xu, Bo Hou, Dong Wu, Yuhan Sun, Mater. Res. Bull. 43 (2008), p.2769.


[12] S. Akamaru, S. Higashide, M. Hara, T. Abe, Thin Solid Films 513 (2006), p.103.

[13] T. Abe, S. Akamaru, K. Watanabe, Y. Honda, J. Alloys Compd. 402 (2005), p.227.

[14] W. Ensinger, H.R. Muller, Nucl. Instrum. Methods Phys. Res. , Sect. B 141 (1998), p.693.

[15] P.R. Willmott, J.R. Huber, Rev. Mod. Phys. 72 (2000), p.315.

[16] M. Giersig, T. Ung, L.M. Liz-Marzan, P. Mulvaney, Adv. Mater. 9 (1997), p.570.

[17] F. Caruso, C. Schüler, D.G. Kurth, Chem. Mater. 11 (1999), p.3394.

[18] M. Karches, M. Morstein, Ph. Rudolf von Rohr, Surf. Coat. Technol. 544 (2003), p.169.

[19] S. Vepek, M. Haussmann, S. Reiprich, J. Dian, Surf. Coat. Technol. 394 (1996), p.86.

[20] T. Mori, K. Tanaka, T. Inomata, T. Takeda, M. Kogoma, Thin Solid Films 89 (1998), p.316.

[21] R.A. Caruso, A. Susha, F. Caruso, Chem. Mater. 13 (2001), p.109.

[22] C E Talley, J B Jackson, C Ouber, N K Grady, C W Hollars, S M Lane, T R Huser, P Nordlander, N J Halas. Nano Lett, 5(2005), p.1569.

[23] Anil Kumar, Vidhi Chaudhary, Nanotechnology 20 (2009), p.095703.

[24] S. R. Hall S. A. Davis and S. Mann, Langmuir, 16 (2000), p.1454.

[25] T. Ung, L.M. Liz-Marzan, Paul Mulvaney, Langmuir 14 (1998), p.3740.

[26] S. L. Westcott, S. J. Oldenburg, T. R. Lee, N. J. Halas, Langmuir 14 (1998), p.5396.

Fetching data from Crossref.
This may take some time to load.