Multiferroic Bismuth Ferrite Nanoparticles: Rapid Sintering Synthesis, Characterization, and Optical Properties

Abstract:

Article Preview

The homogeneous multiferroic BiFeO3 nanoparticles with average particle size of 85 nm have been successfully synthesized by a simple sol-gel route. The prepared sample was characterized by a variety of techniques, such as X-ray diffractometry, thermogravimetric analysis and differential thermal analysis, differential scanning calorimeter analysis, scanning electron microscopy, transmission electron microscopy and X-ray photoelectron spectroscopy. The obtained results shows that rapid sintering and subsequently quenching to room temperature are the two vital important factors for the preparation of pure BiFeO3. The magnetic phase transition (TN = 369 °C) and the ferroelectric phase transition (TC = 824.5 °C) were determined, revealing the antiferromagnetic and ferroelectric nature of the as-prepared BiFeO3 nanoparticles. The optical properties of the nanopowders were investigated. The strong band-gap absorption at 486 nm (2.55 eV) of the BiFeO3 nanoparticles may bring some novel applications.

Info:

Periodical:

Advanced Materials Research (Volumes 152-153)

Edited by:

Zhengyi Jiang, Jingtao Han and Xianghua Liu

Pages:

81-85

DOI:

10.4028/www.scientific.net/AMR.152-153.81

Citation:

X. Wang et al., "Multiferroic Bismuth Ferrite Nanoparticles: Rapid Sintering Synthesis, Characterization, and Optical Properties", Advanced Materials Research, Vols. 152-153, pp. 81-85, 2011

Online since:

October 2010

Export:

Price:

$35.00

[1] M. Fiebig, T. Lottermoser, D. Fröhlich, A. Goltsev and R. Pisarev: Nature Vol. 419 (2002), p.818.

[2] W. Eerenstein, N. D. Mathur and J. F. Scott: Nature Vol. 442 (2006), p.759.

[3] T. Kimura, S. Kawamoto, I. Yamada, M. Azuma, M. Takano and Y. Tokura: Phys. Rev. B Vol. 67 (2003), p.180401.

[4] P. Fischer, M. Polomska, I. Sosnowska, M. Szymanksi: J. Phys. C Vol. 13 (1980), p. (1931).

[5] Y. Wang, L. Zhou, M. Zhang, X. Chen, J. Liu and Z. Liu: Appl. Phys. Lett. Vol. 84 (2004), p.1731.

[6] T. Park, G. Papaefthymiou, A. Viescas, A. Moodenbaugh and S. Wong: Nano Lett. Vol. 7(2007), p.766.

[7] K. Mahesh, V. Palkar, K. Srinivas, S. Suryanarayana: Appl. Phys. Lett. Vol. 76 (2000), p.2764.

[8] S. Shetty, V. R. Palkar and R. Pinto: Pramana. J. Phys. Vol. 58 (2002), p.1027.

[9] N. Das, R. Majumdar, A. Sen and H. S. Maiti: Mater. Lett. Vol. 61(2007), p.2100.

[10] F. Gao, Y. Yuan, K. Wang, X. Chen, F. Chen, J. Liu and Z. Ren, Appl. Phys. Lett. Vol. 89 (2006), p.102506.

[11] J. Wei, D. Xue and Y. Xu: Scipta Materialia Vol. 58 (2008), p.45.

[12] J. Chen, X. Xing, A. Watson, W. Wang, R. Yu, J. Deng, L. Yan, C. Sun and X. Chen: Chem. Mater. Vol. 19 (2007), p.3598.

[13] J. Han, Y. Huang, X. Wu, C. Wu, W. Wei, B. Peng, W. Huang, J. Goodenough: Adv. Mater. Vol. 18 (2006), p.2145.

[14] J. Yu, N. Koshikawa, Y. Arai, S. Yoda and H. Saitou: J. Cryst. Growth Vol. 231 (2001), p.568.

[15] D. Kothari, V. R. Reddy, A. Gupta, D. Phase, N. Lakshmi, S. Deshpande and A. Awasthi: J Phys.: Condens. Matter Vol. 19 (2007), p.136202.

[16] C. Wandelt: Surf. Sci. Rep. Vol. 2 (1982), p.1.

[17] W. Kaczmarek, Z. Pajak and M. Polomska: Solid State Commun. Vol. 17 (1975), p.807.

[18] L. Bi, A. R. Taussig, H. Kim, L. Wang, G. F. Dionne, D. Bono, K. Persson, G. Ceder and C. A. Ross: Phys. Rev. B Vol. 78 (2008), 104106.

In order to see related information, you need to Login.