Forecasting Traffic Volume with Space-Time ARIMA Model

Abstract:

Article Preview

The paper proposes a space–time autoregressive integrated moving average (STARIMA) model to predict the traffic volume in urban areas. The methodological framework incorporates the historical traffic data and the spatial features of a road network. Moreover, the spatial characteristics in a way that reflects not only the distance but also the average travel speed on the links. In order to response the time-varying speed, six traffic modes are classified by level of service (LOS) which is updated in 5 minute interval. In the end, with the real traffic data in Beijing for experiments, the model achieves a very good accuracy on the 5 minute interval forecasting, it also provides a sufficient accuracy of 30 minute interval forecasting compared with ARIMA model.

Info:

Periodical:

Advanced Materials Research (Volumes 156-157)

Edited by:

Jingtao Han, Zhengyi Jiang and Sihai Jiao

Pages:

979-983

DOI:

10.4028/www.scientific.net/AMR.156-157.979

Citation:

Q. Y. Ding et al., "Forecasting Traffic Volume with Space-Time ARIMA Model", Advanced Materials Research, Vols. 156-157, pp. 979-983, 2011

Online since:

October 2010

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.