Temperature Dependence of the Sole Mn2+ Emissions in Manganese Doped ZnS:Mn Quantum Dots

Abstract:

Article Preview

ZnS:Mn Quantum dots (QDs) excess of [S2-] were synthesized by the wet chemical precipitation method with an average diameter of 3.9 nm. Temperature dependence photoluminescence measurements of ZnS:Mn QDs excited at 330nm only show a clear broad emission band with peak at ~595nm assigned to the 4T1→6A1 transition within the 3d5 configuration of Mn2+ in QDs. Through the temperature dependence of emission intensity, emission energy and full widths at half maximum (FWHM), the mechanisms are analyzed to explain the temperature behavior of Mn2+ emission observed here reasonably. The Mn2+ emission intensity decreases with increasing temperature. And the blue shift of the Mn2+ emission energy increase is also observed for increasing the temperature. Furthermore, the FWHM shows weak temperature dependence below 110 K and shows an increase with temperature increasing above 110 K. Consequently, the intrinsic mechanisms of temperature dependence photoluminescence are investigated.

Info:

Periodical:

Edited by:

Dehuai Zeng

Pages:

572-577

Citation:

X. S. Zhang et al., "Temperature Dependence of the Sole Mn2+ Emissions in Manganese Doped ZnS:Mn Quantum Dots", Advanced Materials Research, Vol. 159, pp. 572-577, 2011

Online since:

December 2010

Export:

Price:

$38.00

[1] Seth Coe, Wing-Keung Woo, Moungi Bawendi and Vladimir. Bulovic: Nature Vol. 420 (2002), pp.800-803.

DOI: https://doi.org/10.1038/nature01217

[2] Sumit Chaudhary, Mihrimah Ozkan: Applied physics letters Vol. 84 (2004), pp.2925-2927.

[3] Michael J. Bowers II, James R. McBride, and Sandra J. Rosenthal: Journal of American chemical society Vol. 127 (2005), pp.15378-15379.

DOI: https://doi.org/10.1021/ja055470d

[4] Sun Q, Wang YA, Li LS, Wang, D., Zhu, T., Xu, J., Yang, C. and Li, Y.: Nature Photonics Vol. 1 (2007), pp.717-722.

[5] Narayan Pradhan, David Goorskey, Jason Thessing and Xiaogang Peng: Journal of the american chemical society Vol. 127 (2005), pp.17586-17587.

DOI: https://doi.org/10.1021/ja055557z

[6] Xiaosong Zhang, Lan Li, Dongqing Dong, Zhi Wang and Xiaoyi Dong: Advanced Materials Research Vol. 31 (2008), pp.167-169.

[7] Dong Dong-qing, Li Lan, Zhang Xiao-song, Han Xu, An Hai-ping: Chinese Physics Letters Vol. 24 (2007), pp.2661-2663.

DOI: https://doi.org/10.1088/0256-307x/24/9/055

[8] Xiaosong Zhang, Lan Li, Qingsong Huang, Zhongpeng Zhang, Qun Xi, Xiaoyi Dong, Yange Liu, and Ting Ji: Journal of Nanoscience and Nanotechnology Vol. 10 (2010), pp.5288-5292.

DOI: https://doi.org/10.1166/jnn.2010.3029

[9] Masanori Tanaka, Yasuaki Masumoto: Chemical Physics Letters Vol. 324 (2000), pp.249-254.

[10] J.F. Suyver, S.F. Wuister, J. J. Kelly and A. Meijerrink: Nano Letter Vol. 8 (2001), pp.429-433.

[11] Wei chen, Fuhai Su, Guohua Li, Alan G. Joly, Jan-Olle Malm and Jan-Olov Bovin: Journal of Applied Physics Vol. 92 (2002), p.1950-(1955).

DOI: https://doi.org/10.1063/1.1495070

[12] J.F. Suyver, J. J. Kelly and A. Meijerrink: Journal of Luminescence Vol. 104 (2003), pp.187-196.

[13] T. A. Prokof'ev, B. A. Polezhaev and A.V. Kovalenko: Journal of Applied Spectroscopy Vol. 72 (2005), pp.865-871.

[14] Frederick Seitz: Transactions of the Faraday Society Vol. 35 (1939), pp.74-85.

[15] Jong Su Kim, Yun Hyung Park, Sun Myung Kim, Jin Chul Choi and Hong Lee Park: Solid State Communications Vol. 133 (2005), pp.445-448.

DOI: https://doi.org/10.1016/j.ssc.2004.12.002