Tensile Ductility of Ultra-Fine Grained Copper at High Strain Rate


Article Preview

In this paper, ultra-fine grained copper fabricated by equal channel angular pressing method and annealed coarse grained copper were tensioned under both quasi-static and dynamic loading conditions using an electronic universal testing machine and the split Hopkinson tension bar respectively. The rapture surface of specimen was also observed via a Scanning Electron Microscope (SEM). The experimental results show that the ductility of polycrystalline copper decreases remarkably due to the grain refinement. However, with the increase of applied strain rate, ductility of the UFG-Cu is enhanced. The fracture morphologies also give the evidence of enhanced ductility of UFG-Cu at high strain rate. It is believed the enhanced ductility of UFG materials at high strain rate can be attributed to the restrained dislocation dynamic recovery.



Advanced Materials Research (Volumes 160-162)

Edited by:

Guojun Zhang and Jessica Xu




T. Suo et al., "Tensile Ductility of Ultra-Fine Grained Copper at High Strain Rate", Advanced Materials Research, Vols. 160-162, pp. 260-266, 2011

Online since:

November 2010




[1] Valiev R. Z., R. K. Islamgaliev: Progress in Materials Science Vol. 45 (2000), p.103.

[2] Meyers M. A., A. Mishra, D. J. Benson: Progress in Materials Science Vol. 51 (2006), p.427.

[3] Koch C.C., Morris D.G., Lu K., Inoue A.: Mater. Res Soc. Bull. Vol. 24 (1999), p.54.

[4] Wang Y. M., E. Ma. Materials Science and Engineering A Vol. 375-377 (2004), p.46.

[5] Ma E.: Scripta Materialia Vol. 49 (2003), p.663.

[6] Hart E W.: Acta Materialia Vol. 15 (1967), p.351.

[7] Wang Y.M., Chen M.W., Zhou F.H., Ma E.: Nature Vol. 419 (2002), p.912.

[8] Wang Y. M., Ma E.: Acta Materialia Vol. 52 (2004), p.1699.

[9] Iwahashi Y., Wang J.T., Horita Z., Nemoto M.: Scripta Materialia Vol. 35 (1996), p.143.

[10] Hariprasad S., Sastry S.M.L., Jerina K.L.: Acta Materialia Vol. 44 (1996), p.383.

[11] Li Y.J., Blum W., Breutinger F.: Mater. Sci. Eng. A Vol. 387-389 (2004), p.585.

[12] Wilsdorf H.G.F., Kuhlmann-Wilsdorf D.: Mater. Sci. Eng. A Vol. 164 (1993), p.164.

[13] Billard S., Fondère J.P., Bacroix B., Dirras G.F.: Acta Materialia Vol. 54 (2006), p.411.

[14] Tang F., Schoenung J.M.: Mater. Sci. Eng. A Vol. 493 (2008), p.101.

[15] Conrad H., K. Jung: Scripta Materialia Vol. 53 (2005), p.581.

[16] Torre Dalla, E. V. Pereloma, C. H. J. Davies: Scripta Materialia Vol. 51 (2004), p.367.

[17] R. Z. Valiev, E. V. Kozlov, Yu. F. Ivanov, J. Liani: Acta Materialia Vol. 42 (1994), p.2467.

[18] Estrin Y, in: Unified constitutive Laws of Plastic Deformation. edtied by Krausz A S., Academic Press , New York(1996), p.69.

Fetching data from Crossref.
This may take some time to load.