Structural Damage Detection through Chaotic Interrogation and Attractor Analysis

Abstract:

Article Preview

In this paper, a new approach for damage detection using a chaotic signal as an input excitation and steady state attractor-based measures as diagnostic parameters is investigated by means of numerical simulations. The method utilizes the deterministic, extreme sensitive properties of the chaotic signal to give rise to a low-dimensional response for feature extraction. This approach is applied to two numerical examples, the 4 DOF spring-mass-damper and a cantilevered beam system, where the damage is produced by varying the structural damping and stiffness, respectively. Lyapunov dimension is calculated as a “feature” for detecting the damage. Results show that this approach is feasible to detecting structural damage.

Info:

Periodical:

Advanced Materials Research (Volumes 163-167)

Edited by:

Lijuan Li

Pages:

2515-2520

Citation:

Q. H. Qiu et al., "Structural Damage Detection through Chaotic Interrogation and Attractor Analysis", Advanced Materials Research, Vols. 163-167, pp. 2515-2520, 2011

Online since:

December 2010

Export:

Price:

$41.00

[1] J. E. Doherty, in: Handbook on Experimental Mechanics edited by A. S. Kobayashi, VCH Publishers, Inc., NEW YORK, (1993).

[2] C. R. Farrar and K. Worden: Phil. Trans. R. Soc. A(2007) 365, 303-315.

[3] R. P. Sampaio, N. M. M. Maia and J. M. M. Silva: Journal of Sound and Vibration (1999) 226(5), 1029-1042.

[4] H. Sohn, C. R. Farrar, N. F. Hunter and K. Worden: Journal of Dynamic Systems, Measurement, and Control (2001) 123, 706-711.

[5] J. M. Nichols, S. T. Trickey, M. D. Todd and L. N. Virgin: Meccanica 38: 239-250, (2003).

DOI: https://doi.org/10.1023/a:1022898403359

[6] J. M. Nichols, M. D. Todd and M. Seaver: Physical Review E 67, 016209 (2003).

[7] J. Ryue and P. R. White: Journal of Sound and Vibration 307 (2007) 627-638.

[8] M. D. Todd, K. Erickson, L. Chang, K. Lee and J. M. Nichols: Chaos (2004) 14 (2), 387-399.

[9] H. Kantz and T. Schreiber: Nonlinear Time Series Analysis (Cambridge University Press, Cambridge, 1999).

[10] R. Badii, G. Broggi, B. Derighetti and M. Ravani: Physical Review Letters 60 (1988) 979-982.

[11] L. M. Pecora and T. L. Carroll: Chaos 6 (1996) 432-439.

[12] J. L. Kaplan and J. A. Yprke, in Functional Difference Equations and Approximations of Fixed Points, edited by H. -O. Peitgen and H. -O. Walther, of Lecture Notes in Mathematics Vol. 730 (Springer-Verlag, Berlin, 1979).

[13] G. Barana and I. Tsuda: Phys. Lett. A, (1993) 175: 421-427.