Microwave Hydrothermal Preparation of Uniform Nanocrystalline Anatase

Abstract:

Article Preview

The synthesis of nanocrystalline pure anatase at low temperature and short time is not an easy achievement, as the synthetic processes generally lead to amorphous, moreover some processes normally require harsh reaction. Uniform nanocrystalline pure anatase has been obtained using tetrabutyl titanate and normal butyl alcohol under microwave irradiation condition at low temperature 120 °C for 3 h. This process simplication will lower production cost and make continuous process possible. It was revealed that the as-synthesized TiO2 products without any heat treatment were uniformly dispersed and granulous single-phase anatase, with the average grain size of 10 nm, by means of XRD and TEM.

Info:

Periodical:

Edited by:

Yiwang Bao, Li Tian and Jianghong Gong

Pages:

357-360

Citation:

Z. Q. Chen et al., "Microwave Hydrothermal Preparation of Uniform Nanocrystalline Anatase", Advanced Materials Research, Vol. 177, pp. 357-360, 2011

Online since:

December 2010

Export:

Price:

$38.00

[1] K. Fukushima and I. Yamada: J. Appl. Phys. Vol. 65 (1989), p.619.

[2] B. E. Yoldas and T. W. O'Keeffe: Appl. Opt. Vol. 18 (1979), p.3133.

[3] T. R. N. Kutty and M. Avudaithai: Mater. Res. Bull. Vol. 23 (1988), p.725.

[4] C. M. Freeman, J. M. Newsam, S. W. Levine, et al.: J. Mater. Chem. Vol. 3 (1993), p.531.

[5] V. Chhabra, V. Pillai, B. K. Mishra, et al.: Langmuir Vol. 11 (1995), p.3307.

[6] M. Lal, V. Chhabra, P. Ayyub, et al.: J. Mater. Res. Vol. 13 (1988), p.1249.

[7] L. K. Campbell, B. K. Na and E. I. Ko: Chem. Mater. Vol. 4 (1992), p.1329.

[8] U. Selvaraj, A. V. Prasadarao, S. Komarneni, et al.: J. Am. Ceram. Soc. Vol. 75 (1992), p.1167.

[9] S. Baldassari, S. Komarneni, E. Mariani, et al.: Mater. Res. Bull. Vol. 40 (2005), p. (2015).

[10] S.R. Dhage, Renu Pasricha and V. Ravi: Mater. Res. Bull. Vol. 38 (2003), p.1623.

[11] S.R. Dhage, V. Choube, V. Samuel, et al.: Mater. Lett. Vol. 58 (2004), p.2310.

[12] S.J. Kim, S.D. Park and Y.H. Jeong: J. Am. Ceram. Soc. 8 (1999), p.927.

[13] H. Cheng, J. Ma, Z. Zhao, et al.: Chem. Mater. Vol. 7 (1995), p.663.

[14] Y. Li and Z.Y. Chen: J. Shandong Inst. Build. Mater. Vol. 9 (1995), p.72.

[15] Z.H. Zhou, W.K. Li and Z.Q. Chen: Key Eng. Mater. Vol. 368-372 (2008), p.1462.

[16] Y.Q. Zheng, E.W. Shi, R.L. Yuan, et al.: Sci. China (Series E) Vol. 29(1999), p.208.

[17] Y. Li and Z.Y. Chen: China Ceram. Vol. 33 (1997), p.15.

[18] C.Y. Song and S.M. Yang: Chem. Indu. Eng. Prog. Vol. 23 (2004), p.73.

[19] A.V. Murugan, C.W. Kwon, G. Campet, et al.: J. Phys. Chem. Vol. B 108 (2004), p.10736.

[20] S. Komareni, R.K. Rajha and H. Katsuki: Mater. Chem. Phys. Vol. 61 (1999), p.50.

[21] V. Murugan, V. Samuel and V. Ravi: Mater. Lett. Vol. 60 (2006), p.480.

[22] R. L. Penn and J. F. Banfield: Am. Miner. Vol. 83 (1998), p.1077.

[23] Wells, A. F: Structure Inorganic Chemistry, 4th ed. (Clarendon Press, Oxford, England, 1975).