Adsorption Characters of Mn2+ onto Palygorskites Modified by 1, 10-Phenanthroline and Triethylamine

Abstract:

Article Preview

1, 10-phenanthroline and triethylamine modified palygorskites were prepared by microwave irradiation, and characterized with FT-IR technique. The effects of contact time, adsorbent dosage, and pH value of the initial solution on the adsorption characters of Mn2+ were investigated. The adsorption of Mn2+ from aqueous solutions using 1, 10-phenanthroline or triethylamine modified palygorskites were investigated. Experiment results indicated that 1,10-phenanthroline and triethylamine molecules have been successfully grafted to palygorskite. The adsorption was rapid during the first 5 minuts and equilibrium were attained within 60 minutes in the initial concentration of Mn2+ of 50 and 100 mg•L-1, and fast adsorption in the first 10 minutes and slowly increased with the contact time due to the adsorption of palygorskite. The 1, 10-phenanthroline modified palygorskites had higher adsorption capacity than triethylamine modified palygorskites. Compared with natural palggorskites, the Mn2+ ions adsorption capacities of palggorskite modified by 1, 10-phenanthroline or triethylamine were significantly improved. There were less difference in the adsorption capacity between different dasages of 1, 10-phenanthroline modified palygorskites, but the adsorption capacity of Mn2+ adsorbed onto triethylamine modified palygorskites decreased with increasing the dosages. A Lagergren pseudo-second order model best described the kinetics of adsorption of Mn2+ onto the modified palygorskites.

Info:

Periodical:

Edited by:

Jinsheng Liang and Lijuan Wang

Pages:

8-16

Citation:

L. D. Feng et al., "Adsorption Characters of Mn2+ onto Palygorskites Modified by 1, 10-Phenanthroline and Triethylamine", Advanced Materials Research, Vol. 178, pp. 8-16, 2011

Online since:

December 2010

Export:

Price:

$38.00

[1] A. K. Meena, G. K Mishra and P.K. Rai, et al.: J. Hazard. Mater., Vol. 122 (2005), p.16.

[2] C. P. Huang, D. W. Blankenship: Water Res. Vol. 18 (1984), p.37.

[3] M. A. M. Khraisheh, Y. S. Al-degs and W. A. M. Mcminn: Chem. Eng. J., Vol. 99 (2004), p.177.

[4] A. Neaman, A. Singer: Appl. Clay Sci. Vol. 25 (2004), p.121.

[5] E. Álvarez-Ayuso, A. García-Sánchez: J. Hazard. Mater., Vol. 147 (2007), p.594.

[6] J. H. Potgieter, S. S. Potgieter-Vermaak and P. D. Kalibantonga: Miner. Eng., Vol. 19 (2006), p.463.

[7] H. H. Murray: Appl. Clay Sci., Vol. 17 (2000), p.207.

[8] D. L. Guerra, R. R. Viana and L.P. da Costa: J. Phys. Chem. Solids., Vol. 70 (2009), p.1413.

[9] Q. H. Fan, X. L. Tan and J. X. Li, et al.: Environ. Sci. Technol., Vol. 43 (2009), p.5776.

[10] Z. Niu, Q. Fan and W. Wang, et al.: Appl. Radiat. Isotopes Vol. 67 (2009), p.1582.

[11] H. Chen, Y. G. Zhao and A. Q. Wang: J. Hazard. Mater., Vol. 149 (2007), p.346.

[12] W. J. Wang, H. Chen and A. Q. Wang: Sep. Purif. Technol., Vol. 55 (2007), p.157.

[13] Y. Liu, J. Huang and X. Wang.: J. Am. Oil. Chem. Soc., Vol. 85 (2008), p.979.

[14] Q. Fan, Z. Li and H. Zhao, et al.: Appl. Clay Sci., Vol. 45 (2009), p.111.

[15] Q. Fan, D. Shao and Y. Lu, et al.: Chem. Eng. J., Vol. 150 (2009), p.188.

[16] J. Zhang, S. Xie and Y.S. Ho: J. Hazard. Mate., Vol. 165 (2009), p.218.

[17] W. Wu, Q. Fan and J. Xu, et al.: Appl. Radiat. Isotopes., Vol. 65 (2007), p.1108.

[18] L. Chen, X. Gao: Appl. Radiat. Isotopes., Vol. 67 (2009), p.1.

[19] H. Chen, A. Wang: J. Hazard. s Mater., Vol. 165 (2009), p.223.

[20] P. Liu, T. M. Wang: J. Hazard. Mater., Vol. 149 (2007), p.75.

[21] J. H. Huang, Y. F. Liu and X. G. Wang: J. Hazard. Mater., Vol. 160 (2008), p.382.

[22] Q. H. Fan, D. D. Shao and J. Hu, et al.: Surf. Sci., Vol. 602 (2008), p.778.

[23] Y. Zhao, Y. Chen and M. Li, et al.: J. Hazard. Mater., Vol. 171 (2009), p.640.

[24] X. Wang, Y. Zheng and A. Wang: J. Hazard. Mater., Vol. 168 (2009), p.970.

[25] R. Giustetto, F. X. L. Xamena and G. Ricchiardi, et al.: J. Phys. Chem. B, Vol. 109 (2005), p.19360.

[26] C. Blanco, F. González and C. Pesquera, et al.: Spectrosc. Lett. Vol. 22 (1989), p.659.

[27] J. Huang, Y. Liu and Q. Jin, et al.: J. Hazard. Mater., Vol. 143 (2007), p.541.

[28] P. Liu, J. Guo: Colloid Surf. A, Vol. 282–283 (2006), p.498.

[29] Z. Lei, Q. Zhang and R. Wang, et al.: J. Organomet. Chem., Vol. 691 (2006), p.5767.

[30] A. Li, A. Wang: Eur. Polym. J., Vol. 41 (2005), p.1630.

[31] N. Rajic, D. Stojakovic and S. Jevtic, et al.: J. Hazard. Mater., Vol. 172 (2009), p.1450.

[32] S. M. Dal Bosco, R. S. Jimenez and W. A. Carvalho: J. Colloid Interface Sci., Vol. 281 (2005), p.424.

[33] S. R. Taffarel, S. Rubio: Miner. Eng., Vol. 22 (2009), p.336.

[34] Y. S. Ho, G. McKay: Trans. Inst. Chem Eng., Vol. 76B (1998), p.332.

Fetching data from Crossref.
This may take some time to load.