Sliding Mode Control of Magnetic Levitation Vehicles


Article Preview

The problem of precise control of the air – gap of magnetic levitation vehicles is considered in this paper. A sliding mode controller is designed for the levitation control task. Robustness of the controller was investigated using computer simulations. The results show that the controller is robust to parameter variations of up to ±13% and can tolerate disturbances up to ±400N/Kg.



Advanced Materials Research (Volumes 18-19)

Edited by:

Prof. A.O. Akii Ibhadode




A.S. Kadalla and M.I. Onogu, "Sliding Mode Control of Magnetic Levitation Vehicles", Advanced Materials Research, Vols. 18-19, pp. 79-86, 2007

Online since:

June 2007




[1] Information on http: /www. eia. doe. gov/cabs/nigenv. html.

[2] Johnson, L. R.: Magnetic Levitation train, Encarta Encyclopaedia, (1999).

[3] H. M. Mayer: Magnetic Levitation Systems, Compton's interactive encyclopaedia, (1999).

[4] K. Wako, K. Sawada, M. Murai and M. Tanaka: Railway Technology Today 12: Magnetic Levitation (Maglev) Technologies, Japan Railway & Transport Review, Vol. 25, EJRCF, (2000), pp.58-67.

[5] S. M. Lindsey: Record of Decision: Maglev Deployment program, U. S. Department of Transportation, (2001).

[6] H. M. Gutierrez, and P. I. Ro: Sliding - Mode Control of a Nonlinear - Input System: Application to a Magnetically Levitated Fast - Tool Servo, IEEE Transactions on Industrial Electronics, Vol. 45, No. 6 (1998), pp.921-927.

DOI: 10.1109/41.735336

[7] Z. Yang, and M. Tateishi: Robust Adaptive Nonlinear Control of a Magnetic Levitation System, in: Proc. 14 th Triennial world Congress of IFAC, Beijing, China, (1999), pp.199-204.

[8] J. Shen: H ∞ Control And Sliding Mode Control of Magnetic Levitation System, Asian Journal of control, Vol. 4, No. 3, (2002), pp.333-340.

DOI: 10.1111/j.1934-6093.2002.tb00361.x

[9] T. Tsujino, K. Nakashima and T. Fujii: Application Of H ∞ Control And Closed Loop Identification To A Magnetic Levitation System, Asian Journal of control, Vol. 1, No. 4, (1999), pp.283-296.

DOI: 10.1111/j.1934-6093.1999.tb00026.x

[10] L. Hung and S. Lin: A Multivariable Sliding Mode Control for Magnetic Suspension Systems, in: Proc. National Science Counc. ROC(A), (1995), pp.334-341.

[11] K. J. Åström, and B. Wittenmark: in: Adaptive Control, Addison-Wesley, USA. (1989), pp.42-48, pp.343-369.

[12] A. J. Koshkouei and A. S. I. Zinober: Sliding Mode Controller - Observer Systems With Unmatched Uncertainty, in: Proc. 14 th Triennial world congress of IFAC, Beijing, China, (1999), pp.193-198.

DOI: 10.1016/s1474-6670(17)56204-7

[13] C. Gao, Z. Yang, X. Zhang, and Y. Liu: Fundamental Principle And Synthesis Of Variable Structure Control For Nonlinear Control Of Systems With Time-Delays, in: Proc. 14 th Triennial world congress of IFAC, Beijing, China, (1999), pp.99-104.

[14] S. Ma, and C. Zhaolin: Output Feedback Variable Structure Control Design For Singular Systems, in: Proc. 14th Triennial world congress of IFAC, Beijing, China, (1999), pp.205-210.

DOI: 10.1016/s1474-6670(17)56206-0

[15] E. Jean - Jacques, and W. L. Slotine: in: Applied nonlinear Control, Prentice Hall, Englewood Cliffs, New Jersey, (1991), p.278, 282, 302.

[16] D. Cho, Y. Kato, and D. Spilman: Sliding Mode And Classical Controllers For Magnetic Levitation System, IEEE Control Systems, (1993), pp.42-48.

DOI: 10.1109/37.184792

Fetching data from Crossref.
This may take some time to load.