Performance Comparison of Interdigitated Thin-Film Field-Effect Transistors Using Different Purity Semiconducting Carbon Nanotubes


Article Preview

In this paper, we present the fabrication and characterization of semiconducting carbon nanotube thin-film field-effect transistors (SN-TFTs). High-k dielectric material, hafnium-oxide (HfOX) is used as the gate-oxide of the device. A Thin-film of semi-conducting single walled carbon nanotube (SWCNT) is deposited on the amino-silane modified HfOX surface. Two types of SN-TFTs with interdigitated source and drain contacts are fabricated using 90% and 95% purity of semiconducting SWCNTs (s-SWCNT), have exhibited a p-type behavior with a distinct linear and saturation region of operation. For 20 µm channel length SN-TFT with 95% pure s-SWCNTs has a peak on-off current ratio of 3.5×104 and exhibited a transconductance of 950 µS. The SN-TFT fabricated with HfOX gate oxide has shown a steep sub-threshold slope of 750 mV/decade and threshold voltage of -0.7 V. The SN-TFT of channel length 50 µm has exhibited a maximum mobility of 26.9 cm2/V•s.



Advanced Materials Research (Volumes 181-182)

Edited by:

Qi Luo and Yuanzhi Wang




K.C. Narasimhamurthy and R. P. Palathinkal, "Performance Comparison of Interdigitated Thin-Film Field-Effect Transistors Using Different Purity Semiconducting Carbon Nanotubes", Advanced Materials Research, Vols. 181-182, pp. 343-348, 2011

Online since:

January 2011




[1] H. Klauk, M. Halik, U. Zschieschang, F. Eder, D. Rohde, G. Schmid, and C. Dehm; IEEE Trans. Electron Devices, Vol. 52 (2005), p.618.


[2] C. D. Dimitrakopoulos and D. J. Mascaro; IBM J. Res. Dev., Vol. 45 (2001), p.11.

[3] S. R. Forrest; Nature, Vol. 428 (2004), p.911.

[4] E. S. Snow, J. P. Novak, P. M. Campbell, and D. Park; Appl. Phys. Lett., Vol. 82 (2003), p.2145.

[5] L. Hu, D. S. Hecht, and G. Gruener; Nano Lett., Vol. 4 (2004), p.2513.

[6] M. Engel, J. P., Small, M. Steiner, M. Freitag, A. A. Green, M. C. Hersam, and P. Avouris; ACS Nano, Vol. 2 (2008), p.2445.

[7] C. Wang, J. Zhang, K. Ryu, A. Badmaev, L. G. D. Arco, and C. Zhou; Nano Lett., Vol. 9 (2009), p.4285.

[8] D. Chattopadhyay, F. Papadimitrakopoulos and I. Galeska; J. Am. Chem. Soc., Vol. 125 (2003), p.3370.

[9] M. C. LeMieux, M. Roberts, S. Barman, Y.W. Jin, J. M. Kim, and Z. Bao; Science, Vol. 321 (2008), p.101.

[10] K. C. Narasimhamurthy and Roy Paily; submitted to Solid-State Electronics Journal, (2010).

[11] M. Milnera, J. Kurti, M. Hulman, and H. Kuzmany; Phys. Rev. Lett., Vol. 84 (2000), p.1324.

[12] H. Ko, V.V. Tsukruk; Nano Lett., Vol. 6, (2006), p.1443.

[13] A. Javey, J. Guo, Q. Wang, M. Lundstrom, and H. Dai; Nature, Vol. 424 (2003), p.654.

[14] Z. Zhang, X. Liang, S. Wang, K. Yao, Y. Hu, Y. Zhu, Q. Chen, W. Zhou, Y. Li, Y. Yao, J. Zhang, and L. -M. Peng; Nano Lett., Vol. 7 (2007), p.3603.