Low-Temperature Synthesis and Optical Property of ZnO Nanorod Arrays

Abstract:

Article Preview

Well-aligned ZnO nanorod arrays with 100-200nm diameter and about 1μm length were vertically grown on quartz substrate at relatively low temperature by a solution deposition method. The effects of reactant ratio, water-bath temperature, growth time on crystal structure were discussed. Microstructure of the arrays was investigated using X-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM), optical properties were examined using fluorescence spectrophotometer. The results show that a Zn/C6H12N4 molar ratio of 1:1, bath temprature 70°C, growth time of 24h are the optimal condition for the preparation of densely distributed ZnO arrays. XRD and FE-SEM analysis confirmed that the ZnO nanorod is a single crystal with a wurtzite structure and the photoluminescence (PL) spectra exhibit coexistence properties of ultraviolet (UV), blue and green emissions.

Info:

Periodical:

Advanced Materials Research (Volumes 183-185)

Edited by:

Yanguo Shi and Jinlong Zuo

Pages:

1605-1610

Citation:

F. F. Li et al., "Low-Temperature Synthesis and Optical Property of ZnO Nanorod Arrays", Advanced Materials Research, Vols. 183-185, pp. 1605-1610, 2011

Online since:

January 2011

Export:

Price:

$41.00

[1] Li C M, Liu H C, Xu H X. Progress in preparation and application of ZnO nano-material[J]. Materials Review, 2003, 17(5): 39-41. (in chinese).

[2] Peaton S J, Norton D P, Ip K, et al. Recent progress in processing and properties of ZnO[J]. Progress in Materials Science, 2005, 50(3): 293-310.

[3] Ip K, Pearton S J, Norton D. P, et al. Advances in Processing of ZnO[J]. Zinc Oxide Bulk, Thin Films and Nanostructures, 2006, 313-338.

DOI: https://doi.org/10.1016/b978-008044722-3/50009-9

[4] Seema R, Poonam S, Shishodia P K, et al. Synthesis of nanocrystalline ZnO powder via sol–gel route for dye-sensitized solar cells [J]. Solar Energy Materials and Solar Cells, 2008, (92) 12 1639-1645.

DOI: https://doi.org/10.1016/j.solmat.2008.07.015

[5] Wang Z S, Huang C H, Huang Y Y, et al. A highly efficient solar cell made from a dye-modified ZnO-covered TiO2 nanoporous electrode[J]. Chem. Mater. 13 (2001)678–682.

DOI: https://doi.org/10.1021/cm000230c

[6] Kimhm, Kang T W, Chung K S. Nanoscale ultraviolet-light-emitting diodes using wide-bandgap gallium nitride nano-rods[J]. Adv Mater, 2003, 15: 567-569.

DOI: https://doi.org/10.1002/adma.200304554

[7] Liu G, Li G S, Qiu X Q, et al. Synthesis of ZnO/titanate nanocomposites with highly photocatalytic activity under visible light irradiation[J]. Journal of Alloys and Compounds, July 2009, 481(1-2): 492-497.

DOI: https://doi.org/10.1016/j.jallcom.2009.03.021

[8] Sahay P P. Zinc oxide thin film gas sensor for detection of acetone[J]. J. Mater Sci 2005, 40: 4383-4386.

DOI: https://doi.org/10.1007/s10853-005-0738-0

[9] Lu H, Wang Y L, Lin X. Structures, varistor properties, and electrical stability of ZnO thin films[J]. Materials Letters, 2009, 63(27), 2321-2323.

DOI: https://doi.org/10.1016/j.matlet.2009.08.001

[10] Fu Y Q, Luo J K, Du X Y, et al.  Recent developments on ZnO films for acoustic wave based bio-sensing and microfluidic applications: a review. Sensors and Actuators B: Chemical, 2010, 143(2) 606-619.

DOI: https://doi.org/10.1016/j.snb.2009.10.010

[11] Cheng C L, Lin J S, Chen Y F et al. A simple approach for the growth of highly ordered ZnO nanotube arrays. Journal of Alloys and Compounds, 2009, 476(1-2), 903-907.

DOI: https://doi.org/10.1016/j.jallcom.2008.09.132

[12] Zhu J Y, Zhang J X, Zhou H F, et al. Microwave-assisted synthesis and characterization of ZnO-nanorod arrays . Transactions of Nonferrous Metals Society of China, 2009, 19(6): 1578- 1582.

DOI: https://doi.org/10.1016/s1003-6326(09)60073-x

[13] Guo M, Diao P, Cai S M. Hydrothermal growth of perpendicularly oriented ZnO nanorod array film and its photoelectrochemical properties[J]. Appl Surf Sci, 2005, 249(1): 71-74.

DOI: https://doi.org/10.1016/j.apsusc.2004.11.053

[14] Hao X T, Zhu F R, Tan L W. Hydrogenated aluminium-doped zinc oxide semiconductor thin films for polymeric light-emitting diodes[J]. Semicond Sci. Tech. 2006: 21(1): 48-54.

DOI: https://doi.org/10.1088/0268-1242/21/1/009

[15] Ding R, Xu C X, Gu B X, et al. Effects of Mg Incorporation on Microstructure and Optical Properties of ZnO Thin Films Prepared by Sol-gel Method[J]. Journal of Materials Science and Technology, 2010, 26(7): 601-604.

DOI: https://doi.org/10.1016/s1005-0302(10)60092-8

[16] Huang M H, Wu Y, Feick H, et al. Catalytic growth of zinc oxide nanowires by vapor transport. Adv Mater, 2001, 13(2): 113~116.

DOI: https://doi.org/10.1002/1521-4095(200101)13:2<113::aid-adma113>3.0.co;2-h

[17] Yi S H, Choi S K, Jang J M, et al. Low-temperature growth of ZnO nanorods by chemical bath deposition[J]. Journal of Colloid and Interface Science, 2007, 313(2) Pages 705-710.

DOI: https://doi.org/10.1016/j.jcis.2007.05.006

[18] Byrne D, McGlynn E, Henry M O, et al. A novel, substrate independent three-step process for the growth of uniform ZnO nanorod arrays[J]. Thin Solid Films. 2010, 518: 4489–4492.

DOI: https://doi.org/10.1016/j.tsf.2009.12.014

[19] ZengY, Zhang T, Yuan M X, et al. Growth and selective acetone detection based on ZnO nanorod arrays[J]. Sensors and Actuators B, 2009, 143: 93-98.

[20] Liu Z F, Lei E, Jing Y, et al. Growth of ZnO nanorods by aqueous solution method with electrodeposited ZnO seed layers[J]. Applied Surface Science. 2009, 255: 6415–6420.

DOI: https://doi.org/10.1016/j.apsusc.2009.02.030