Effect of Exogenous Nitric Oxide Donor on Lipid Peroxidation and Antioxidant System in Needles of Taxus chinensis Var. mairei Seeding


Article Preview

Taxus chinensis var. mairei was used as test material, exogenous nitric oxide (NO) fumigation treatment with different concentration (0, 0.01, 0.1, 0.5 or 1 mM) of sodium nitrop russide (SNP), a donor for exogenous NO, was used to study the effects of NO on the active oxygen metabolism index of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), peroxidase (POD), Hydrogen peroxide (H2O2) and malondialdehyde (MDA) in Taxus chinensis var. mairei. The results showed that low concentration of exogenous NO treatment increased the activities of the protective enzyme, such as SOD, CAT, POD and APX of Taxus chinensis var. mairei leaves, reduced the content of H2O2, and inhibit the increase of MDA in the first three days. NO fumigation treatment enhanced the antioxidant ability of Taxus chinensis var. mairei, prevented lipid membrane peroxidation.



Advanced Materials Research (Volumes 183-185)

Edited by:

Yanguo Shi and Jinlong Zuo




D. W. Li et al., "Effect of Exogenous Nitric Oxide Donor on Lipid Peroxidation and Antioxidant System in Needles of Taxus chinensis Var. mairei Seeding", Advanced Materials Research, Vols. 183-185, pp. 427-431, 2011

Online since:

January 2011




[1] L. Lamattina, C. Garcia-Mata, M. Graziano and G. Pagnussat: Annu. Rev. Plant Biol. Vol. 54 (2003), pp.109-136.

DOI: https://doi.org/10.1146/annurev.arplant.54.031902.134752

[2] M.V. Beligni, L. Lamattina: Planta Vol. 210 (2000), pp.215-221.

[3] M. Zottini, E. Formentin, M. Scattolin, F. Carimi, F.L. Schiavo and M. Terzi: FEBS Lett. Vol. 515 (2002), pp.15-78.

DOI: https://doi.org/10.1016/s0014-5793(02)02438-9

[4] X. Hu, S.J. Neil1, Z. Tang and W. Cai: Plant Physiol. Vol. 137 (2005), pp.663-670.

[5] A. Uchida, A.T. Jagendorf, T. Hibino and T. Takabe: Plant Sci. Vol. 163 (2002), pp.515-523.

[6] J.M. May and Z.C. Qu: Arch. Biochem. Biophys. Vol. 429 (2004), pp.106-113.

[7] E.S. Yang and J.W. Park: Biochimie Vol. 88 (2006), pp.869-878.

[8] B. Chance, H. Sies and A. Boveris: Physiol. Rev. Vol. 59 (1979), pp.527-605.

[9] Y.J. Fu, R. Sun, Y.G. Zu, S. Li, W. Liu, E. Thomas, C.B. Gu, L. Zhang and H. Luo: Biomed. Chromatogr Vol. 23 (2009), pp.63-70.

[10] B.D. Patterson, E.A. Macrae and I.B. Ferguson: Anal. Biochem. Vol. 139 (1984), pp.487-492.

[11] R.L. Heath and L. Packer: Arch. Biochem. Biophys. Vol. 125 (1968), pp.189-198.

[12] M.Y. Jiang and J.H. Zhang: J. Exp. Bot. Vol. 53 (2002), pp.2401-2410.

[13] S. Luperchio, S. Tamir and S. Tannenbaum: Free Radic. Biol. Med. Vol. 21 (1996), pp.513-519.

[14] Y.G. Zu, H. H Pang, J.H. Yu, D.W. Li, X.X. Wei, Y.X. Gao and L. Tong: J. Photoch. Photobio. B Vol. 98 (2010), pp.152-158.

[15] V. Mishra, G. Srivastava and S.M. Prasad: Sci. Hortic. Vol. 120 (2009), pp.373-378.

[16] S.W. Wang, B.T. Xie, L.N. Yin, L.S. Duan, Z.H. Li, A.E. Eneji, W. Tsuji and A. Tsunekawa: Photochem. Photobiol. Vol. 86 (2010), pp.110-116.

[17] I. Yazici, I. Türkan, A.H. Sekmen and T. Demiral: Environ. Exp. Bot. Vol. 61 (2007), pp.49-57.

[18] A.D. Boveris, A. Galatro and S. Puntarulo: Biol. Res. Vol. 33 (2000), pp.159-165.

[19] D.M. Santa-Cruz, N.A. Pacienza, A.H. Polizio, K.B. Balestrasse, M.L. Tomaro and G.G. Yannarelli: Phytochem. Vol. 71 (2010), pp.1700-1707.

DOI: https://doi.org/10.1016/j.phytochem.2010.07.009

Fetching data from Crossref.
This may take some time to load.