Chaos in a Fractional-Order Modified Van Der Pol Oscillator


Article Preview

The dynamics of fractional-order systems have attracted increasing attention in recent years. In this paper, we study the chaotic behaviors in a fractional-order modified van der Pol oscillator . We find that chaos exists in the fractional-order modified van der Pol oscillator with order less than 3. In addition, the lowest order we find for chaos to exist in such system is 2.4.



Edited by:

Yanwen Wu






X. Gao "Chaos in a Fractional-Order Modified Van Der Pol Oscillator", Advanced Materials Research, Vol. 187, pp. 603-608, 2011

Online since:

February 2011





[1] R.C. Koeller: J. Appl. Mech., Vol. 51(1984), p.299.

[2] M. Ichise, Y. Nagayanagi and T. Kojima: J. Electroanal. Chem., Vol. 33(1971), pp.253-265.

[3] B. Mandelbrot: IEEE Trans. Inform Theory, 1967, IT-13.

[4] O. Heaviside: Electromagnetic theory. New York: Chelsea, (1971).

[5] T.T. Hartly, C.F. Lorenzo and H.K. Qammer: IEEE Trans. CAS-I: Fundamental Theory and Applications, Vol. 42(1995), p.485.

[6] W. Ahmad, R. EI-khazali and A.S. EIwakil: Electron. Lett., Vol. 37(2001), p.1110.

[7] P. Arena, R. Caponetto, L. Fortuna and D. Porto: Proceeding of the ECCTD, Budapest, 1997, p.1259.

[8] W.M. Ahmad and J.C. Sprott: Chaos, Solitons & Fractals. Vol. 16(2003), p.339.

[9] E.J. Doedel, E. Freire, E. Gamero and A.J. Rodriguez: Journal of Sound and Vibration, Vol. 256(2002), p.755.

In order to see related information, you need to Login.