Experimental Study and Theory Prediction on Adiabatic Shear Critical Conditions of Fe-36Ni Invar Alloy


Article Preview

Orthogonal cutting experiments of Fe-36Ni invar alloy are performed to investigate the influence of cutting conditons on adiabtic shear, which occurs in the process of chip formation of many materials. It is found that the cutting speed, cutting depth and rake angle all have influence on adiabatic shear and there is a critical cutting speed at which the adiabatic shear appears. By metallurgical observation, the critical cutting speed under different cutting depth and rake angles are given. A model based on linear pertubation analysis is used to predict the adiabatic shear critical ctting conditions of Fe-36Ni invar alloy. The comparison of prediction results and that of expriments shows that this prediction model is available.



Main Theme:

Edited by:

Chengyong Wang, Ning He, Ming Chen and Chuanzhen Huang




G. H. Li and M. J. Wang, "Experimental Study and Theory Prediction on Adiabatic Shear Critical Conditions of Fe-36Ni Invar Alloy", Advanced Materials Research, Vol. 188, pp. 110-115, 2011

Online since:

March 2011




[1] R. Komanduri. Some clarifications on the mechanisms of chip formation when machining titanium alloys, Wear, 1982, 76: 15-34.

DOI: https://doi.org/10.1016/0043-1648(82)90113-2

[2] R. Komanduri, T. Schroeder, J. Hazra, B.F. von Turkovich, D.G. Flom. On the catastrophic shear instability in high-speed machining of an AISI4340 Steel, J. Eng. Indus. 1982, 104: 121-131.

DOI: https://doi.org/10.1115/1.3185807

[3] J. Q. Xie, A. E. Bayouml, H. M. Zbib. Analytical and experimental study of shear localization in chip formation in orthogonal machining, J. Mater. Eng. Performance. 1995, 4(1): 32-39.

DOI: https://doi.org/10.1007/bf02682702

[4] R. Balkrishna, C. S. Yung. Analysis on high-speed face-milling of 7075-T6 aluminum using carbide and diamond cutters, Int. J. Mach. Tools & Manufacture. 2001, 4: 1763-1781.

DOI: https://doi.org/10.1016/s0890-6955(01)00033-5

[5] Y. Ohbuchi, T. Obikawa. Adiabatic shear in chip formation with negative rake angle, Int. J. Mech. Sci. 2005, 47: 1377-1392.

DOI: https://doi.org/10.1016/j.ijmecsci.2005.05.003

[6] R.F. Recht. Catastrophic thermoplastic shear, J. Appl. Mech. 1964, 31: 189-193.

[7] S. L. Semiatin, G. D. Lahoti, S. I. Oh. The occurrence of shear bands in metalworking: material behavior under high stress and ultrahigh loading rates, 29th Sagamore Conference, Plenum Press, 1983: 119-159.

DOI: https://doi.org/10.1007/978-1-4613-3787-4_7

[8] H. Zhen-Bin, R. Komanduri. On a thermo-mechanical model of shear instability in machining, Ann. CIRP. 1995, 44(1): 69-73.

DOI: https://doi.org/10.1016/s0007-8506(07)62277-x

[9] G. H. Li, M. J. Wang, C. Z. Duan. Adiabatic shear critical condition in high-speed cutting, J. Mater. Proc. Tech. 2009, 209(3): 1362-1367.

[10] J. H. L. The, R. F. Scrutton. Stess-state in the shear zone during steady state machining, J. Eng. Ind. Trans. ASME. 1979, 101(2): 211-216.

[11] G. H. Li, M. J. Wang. Caluculation of the temperture distribution of primary shear zone in orthogonal high speed cutting based on the non-uniform volume moving heat source, Mate. Sci. Forum. 2009, 626-627: 105-110.

DOI: https://doi.org/10.4028/www.scientific.net/msf.626-627.105

[12] Tay, M. G. Stevenson, G. De. Vahl Davis, P. L. B. Oxley. A numerical method for calculating temperature distributions in machining , from force and shear angle measurements, Int. J. Mach. Tool. Design & Research, 1976, 16(4): 335-349.

DOI: https://doi.org/10.1016/0020-7357(76)90043-3

[13] Martin Bäker, Joachim Rösler, Carsten siemers. A finite element model of high speed metal cutting with adiabatic shearing, Computers and Structures, 2002, 80(5-6): 495-513.

DOI: https://doi.org/10.1016/s0045-7949(02)00023-8