Determination of Optimal Microminiature Powder Injection Molding Parameters by Taguchi Approach

Abstract:

Article Preview

The global manufacturing trend is now focusing towards miniaturization. Microminiature Powder Injection Molding (μPIM) is a viable technology to fabricate complex and high performance miniaturized components. The μPIM technique was used to produce the near-net shape micro components in this study. Fine stainless steel powder with particle size of 5μm was mixed with a ternary water-based binder system. Micro dumbbells with the largest dimension of 9mm were replicated. In order to obtain successful and well molded micro dumbbells, the Design of Experiments (DOE) technique was applied to investigate the optimal parameters in injection molding process. Injection parameters such as injection pressure (A), injection temperature (B), powder loading (C), mold temperature (D), injection time (E) and holding time (F) were optimized by using stainless steel feedstocks. Taguchi approach is chosen and the results were evaluated with signal-to-noise (SN) ratio and analysis of variance (ANOVA). The results show that the feedstocks could be replicated by using μPIM method with the application of Taguchi approach.

Info:

Periodical:

Advanced Materials Research (Volumes 189-193)

Edited by:

Zhengyi Jiang, Shanqing Li, Jianmin Zeng, Xiaoping Liao and Daoguo Yang

Pages:

2997-3000

DOI:

10.4028/www.scientific.net/AMR.189-193.2997

Citation:

H. P. Li and N. Muhamad, "Determination of Optimal Microminiature Powder Injection Molding Parameters by Taguchi Approach", Advanced Materials Research, Vols. 189-193, pp. 2997-3000, 2011

Online since:

February 2011

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.