Simulation of Facet Dendritic Shape of Isothermal Alloy in a Forced Flow by Phase Field Method

Abstract:

Article Preview

Numerical simulation based on a new regularized phase field model was performed to describe the dendritic growth of an isothermal alloy with a strong anisotropy in the presence of a forced flow. These results indicate that a crystal grow into an equiaxial facet dendritic in the absence of a forced flow and into an asymmetrical facet dendritic in the presence of a forced flow. With increasing a flow velocity, the tip steady velocity of upstream dendritic arm increases, that of the downstream arm decreases, and that of the perpendicular arms increases at first, and then decreases, the perpendicular arms gradually grow toward the incoming flow direction. In the certain range of anisotropy parameter, when γ is larger than 0.14, dendritic tip steady velocities in all direction are expected to reach their own saturation values. In addition, the effect of a compound forced flow on an isothermal facet dendritic is similar to experimental results.

Info:

Periodical:

Advanced Materials Research (Volumes 189-193)

Edited by:

Zhengyi Jiang, Shanqing Li, Jianmin Zeng, Xiaoping Liao and Daoguo Yang

Pages:

3874-3879

DOI:

10.4028/www.scientific.net/AMR.189-193.3874

Citation:

Z. Chen et al., "Simulation of Facet Dendritic Shape of Isothermal Alloy in a Forced Flow by Phase Field Method", Advanced Materials Research, Vols. 189-193, pp. 3874-3879, 2011

Online since:

February 2011

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.