Prediction Model of End-Point Carbon Content for BOF Based on LM BP Neural Network

Abstract:

Article Preview

Reaction process of BOF steelmaking is a very complex physical chemistry process which is very difficult to describe linearity. The traditional static model has poor accuracy, and the target hit rate is low. Based on the analysis of the major influential factors, the influential factors of converter smelting on the endpoint control of carbon content are fixed in this paper. A prediction model of end-point carbon content for BOF is established based on Levenberg-Marquardt (LM) algorithm of BP neural network. The simulated results show that the hitting rates of end-point carbon content reached 80% when accuracy of target error is ±0.025%.

Info:

Periodical:

Advanced Materials Research (Volumes 189-193)

Edited by:

Zhengyi Jiang, Shanqing Li, Jianmin Zeng, Xiaoping Liao and Daoguo Yang

Pages:

4446-4450

DOI:

10.4028/www.scientific.net/AMR.189-193.4446

Citation:

C. R. Li et al., "Prediction Model of End-Point Carbon Content for BOF Based on LM BP Neural Network", Advanced Materials Research, Vols. 189-193, pp. 4446-4450, 2011

Online since:

February 2011

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.