Analysis of Influence of Optical Electrode Geometry Effects on Manipulation Using Lateral-Field Optoelectronic Tweezers

Abstract:

Article Preview

The use of photoconductive film improves the flexibility of dielectrophoretic device and the optoelectronic tweezers provides dynamically reconfigurable optical electrode which provides effective technology in the bio-particles parallel manipulation. In this paper, a circle floating electrode and a castellated shape optical electrode are designed in the lateral-field optoelectronic tweezers. The gradient of the square of the electric field is analyzed as the main parameter. The simulation results show that the floating electrode changes the distribution of the electric field and improves the manipulation capability in the region between the strip electrodes. The castellated shape electrode extends the strip electrode and performs the capability of the traditional physical castellated shape electrode. On the same condition the peak value of x direction of the gradient of the square of the electric field is about 15% smaller than the traditional physical electrode mode because the potential decays in the photoconductive film. To obtain the reconfigurable capability, this shortcoming can be overcome by increasing the applied AC signal voltage.

Info:

Periodical:

Advanced Materials Research (Volumes 194-196)

Edited by:

Jianmin Zeng, Taosen Li, Shaojian Ma, Zhengyi Jiang and Daoguo Yang

Pages:

2444-2447

Citation:

C. F. Song et al., "Analysis of Influence of Optical Electrode Geometry Effects on Manipulation Using Lateral-Field Optoelectronic Tweezers", Advanced Materials Research, Vols. 194-196, pp. 2444-2447, 2011

Online since:

February 2011

Export:

Price:

$38.00

[1] T. Honegger, K. Berton, T. Pinedo-Rivera, D. Peyrade: Microelectronic Engineering Vol. 86 (2009), P. 1401-1403.

DOI: https://doi.org/10.1016/j.mee.2008.11.060

[2] N. Manaresi, A. Romani, G. Medooro, L. Altomare, A. Leonardi, M. Tartagni and R. Guerrieri: IEEE Journal of Solid-State Circuit Vol. 38 (2003), P. 2297-2305.

DOI: https://doi.org/10.1109/jssc.2003.819171

[3] A. Ashkin, J. M. Dziedzic and T. Yammane: Nature Vol. 330 (1987), P. 769-771.

[4] P. Y. Chiou, A. T. Ohta, M. C. Wu: Nature Vol. 436 (2005), P. 370-372.

[5] H. Y. Hsu, A. T. Ohta, P. Y. Chiou, A. Jamshidi, S. L. Neale and M. C. Wu: Lab on a chip Vol. 10 (2010), P. 165-172.

[6] J. K. Valley, A. T. Ohta, H. Y. Hsu, S. L Neale, A. Jamshidi and M. C. Wu: IEEE Transactions on Biomedical Circuits and Systems Vol. 3 (2009), P. 424-431.

[7] A. T. Ohta, S. L. Neale, H. Y. Hsu, J. K. Valley and M. C. Wu in: IEEE/LEOS International Conference on Optical MEMS and Nanophotonics, OPT MEMS. Aug. 11-14, 2008, pp.7-8.

DOI: https://doi.org/10.1109/omems.2008.4607801

[8] H. Morgan and N. G. Green, Research Studies Press Ltd, Baldock (2003).