Fabrication of CaWO4:Eu3+ Thin Films via Electrochemical Methods Assisted by a Novel Post Treatment

Abstract:

Article Preview

It is hardly possible to obtain rare earth doped CaWO4 thin films directly through electrochemical techniques. A novel post processing has been proposed to synthesize CaWO4:Eu3+ thin films at room temperature. X-ray diffraction, X-ray photoelectron spectrometry, spectrophotometer were used to characterize their phase, composition and luminescent properties. Results reveal that Eu3+-doped CaWO4 films have a tetragonal phase; the content of Eu in the near surface region is much higher than that of the bulk; under the excitation of 310 nm, a sharp emission peak at 616 nm has been observed for Ca0.9WO4:Eu0.13+ thin films.

Info:

Periodical:

Advanced Materials Research (Volumes 194-196)

Edited by:

Jianmin Zeng, Taosen Li, Shaojian Ma, Zhengyi Jiang and Daoguo Yang

Pages:

2458-2461

DOI:

10.4028/www.scientific.net/AMR.194-196.2458

Citation:

L. P. Chen et al., "Fabrication of CaWO4:Eu3+ Thin Films via Electrochemical Methods Assisted by a Novel Post Treatment", Advanced Materials Research, Vols. 194-196, pp. 2458-2461, 2011

Online since:

February 2011

Export:

Price:

$35.00

[1] G. Bayer, H.G. Wiedemann, Thermochim Acta 133 (1988), 125.

[2] A.G. Page, S.V. Godbole, M.D. Sastry, J. Phys. Chem. Solids 50 (1989), 571.

[3] T.T. Basiev, A.A. Sobol, Y.K. Voronko, P.G. Zverev, Opt. Mater. 15 (2000), 205.

[4] L.I. Ivleva, T.T. Basiev, I.S. Voronina, P.G. Zverev, V.V. Osiko, N.M. Polozkov, Opt. Mater. 23 (2003), 439.

DOI: 10.1016/s0925-3467(02)00335-x

[5] P. Cerny, P.G. Zverev, H. Jelinkova, T.T. Basiev, Opt. Commun. 177 (2000), 397.

[6] S.K. Shi, J. Gao, J. Zhou, Opt. Mater. 30 (2008), 1616.

[7] T.H. Jagemann, F.V. Feilitzsch, H. Hagn, J. Jochum, W. Potzel, W. Rau, M. Stark, W. Westphal, Astroparticle Physics 26 (2006), 269.

DOI: 10.1016/j.astropartphys.2006.06.010

[8] D. Christofilos, K. Papagelis, S. Ves, G.A. Kourouklis, C. Raptis, J. Phys.: Condens. Matter 14 (2002), 12641.

[9] W.S. Cho, M. Yashima, M. Kakihana, A. Kudo, T. Sakata, M. Yoshimura, Appl. Phys. Lett. 66 (1995), 1027.

[10] C.T. Xia, V.M. Fuenzalida, and R.A. Zarate, J. Alloy. Compd. 316 (2001), 250.

[11] L.P. Chen, Y.H. Gao, Mater. Res. Bull. 42 (2007), 1823.

[12] D.J. Gao, X. Lai, C.H. Cui, P. Cheng, J. Bi, Thin Solid Films 518 (2010), 3151.

[13] M.J. Treadaway, R.C. Powell, J. Chem. Phys. 61 (1974), 4003.

[14] L.P. Chen, China Patent 201010153529. 9. (2010) (In Chinese).

[15] L.P. Chen; Y.H. Gao, China Patent 201010034421. 8. (2010) (In Chinese).

[16] JCPDS card No. 77-2233.

[17] C.D. Wagner, W.M. Riggs, L.E. Davis, G.E. Muilenberg, A Reference Book of Standard Data for Use in X-ray Photoelectron Spectroscopy; Perkin-Elemer Corporation and Physical Electronics Division, Minnesota, USA, (1979).

[18] M. Czaja, S. Bodyl, P. Gluchowski, Z. Mazurak, W. Strek, J. Alloy. Comp. 451 (2008), 290.

In order to see related information, you need to Login.