Effect Analysis of Ar-N2 Flow Rates on ZrNX Film by Pulsed Magnetron Sputtering Using Design of Experimental Method


Article Preview

The various nitrogen gas (N2) flows for depositing zirconium-nitride (ZrN) films on the substrate of a p-type (100) silicon wafer are investigated through reactive magnetron sputtering by a pulsed-DC power. The results, based on the design of experimental (DOE) method, indicate that the deposition effect of the ZrNx film is obviously affected by various flow rates of nitrogen gas at the specific pulsing duty cycles. The crystal orientation of the zirconium-nitride film has a less order microstructure which is similar to an amorphous microstructure. Although the composition ratio of chemical elements is not identical in Zr and N, the surface roughness, grain size, and resistivity are the better feature. The deposition rate is inversely proportional to the nitrogen flow rate and the chamber pressure is also an important factor. The basic effect of N2 flow rate on the surface roughness is rougher when more nitrogen gas is supplied. The resistivity of ZrNx thin film has a positive relationship to N2 flow rates at the reactive vacuum chamber.



Advanced Materials Research (Volumes 194-196)

Edited by:

Jianmin Zeng, Taosen Li, Shaojian Ma, Zhengyi Jiang and Daoguo Yang






H. J. Wen et al., "Effect Analysis of Ar-N2 Flow Rates on ZrNX Film by Pulsed Magnetron Sputtering Using Design of Experimental Method", Advanced Materials Research, Vols. 194-196, pp. 2491-2498, 2011

Online since:

February 2011




[1] D.F. Arias, Y.C. Arango and A. Devia: Applied Surface Science Vol. 252 (2005), pp.1175-1181.

[2] C.S. Chen, C.P. Liu, C.Y. Tsao and H.G. Yang: Scripta Materialia Vol. 51 (2004), pp.715-719.

[3] C.P. Liu and H.G. Yang: Materials Chemistry and Physics Vol. 86 (2004), pp.370-374.

[4] T. Delachaux, C. Hollenstein, F. Lévy and C. Verdon: Thin Solid Films Vol. 425 (2003), pp.113-116.

DOI: 10.1016/s0040-6090(02)01132-x

[5] J.R. Lloyd, J. Clemens, and R. Snede: Microelectronics Reliability Vol. 39 (1999), pp.1595-1602.

DOI: 10.1016/s0026-2714(99)00177-8

[6] J.A. Thornton: J. Vac. Sci. Technol. A Vol. 4 (1986), pp.3059-3065.

[7] N. Konofaos: Microelectronics Journal Vol. 35 (2004), pp.421-425.

[8] K. Yukimura, M. Sano, T. Teramoto and T. Maruyama: Surface and Coatings Technology Vol. 131 (2000), pp.98-101.

[9] J. Westlinder, J. Malmström, G. Sjöblom and J. Olsson: Solid-State Electronics Vol. 49 (2005), pp.1410-1413.

DOI: 10.1016/j.sse.2005.06.021

[10] C. Kaufmann, J. Baumann, T. Gessner, T. Raschke, M. Rennau and N. Zichner: Applied Surface Science Vol. 91 (1995), pp.291-294.

DOI: 10.1016/0169-4332(95)00133-6

[11] D.H. Kim, Y.J. Kim, J.H. Park and J.H. Kim: Materials Science and Engineering C Vol. 24 (2004), pp.289-291.

[12] J. Torres, J.L. Mermet, R. Madar, G. Crean, T. Gessner, A. Bertz, W. Hasse, M. Plotner, F. Binder and D. Save: Microelectronic Engineering Vol. 34 (1996), pp.119-122.

DOI: 10.1016/s0167-9317(96)00022-6

[13] J. Baumann, T. Werner, A. Ehrlich, M. Rennau, C. Kaufmann and T. Gessner: Microelectronic Engineering Vol. 37-38 (1997), pp.221-228.

DOI: 10.1016/s0167-9317(97)00115-9

[14] M.Y. Kwak, D.H. Shin, T.W. Kang and K.N. Kim: Thin Solid Films Vol. 339 (1999), pp.290-293.

[15] N.S.J. Braithwaite: Plasma Sources Sci. Technol. Vol. 9 (2000), pp.517-527.

[16] H. Conrads and M. Schmidt: Plasma Source Sci. Technol. Vol. 9 (2000), pp.441-454.

[17] R.F. Bunshah and C.V. Deshpandey: J. Vac. Sci. Technol. A Vol. 3 (1985), pp.553-560.

[18] B. Chapman: Glow discharge process (John Wiley & Sons, New York 1980).

[19] M. Konuma: Film Deposition by Plasma Techniques (Springer-Verlag, Berlin, Germany 1992).

[20] A. Belkind, Z. Zhao, D. Carter, L. Mahoney, G. McDonough, G. Roche, R. Scholl and H. Walde: Society of Vacuum Coaters, 43rd Conference Proceedings (2000), pp.86-90.

[21] C. Kugler, F. Bauer, J. Laimer and H. Störi: Vacuum Vol. 61 (2001), pp.379-383.

[22] C.O. Jung, K.K. Chi, B.G. Hwang, J.T. Moon, M.Y. Lee and J.G. Lee: Thin Solid Films Vol. 341 (1999), pp.112-119.

[23] F.L. Wen, Y. -L. Lo, C. -H. Lin, and S. -C. Mou: Mater. Sci. Forum Vol. 505-507 Pt2 (2006), pp.865-870.

[24] J. Walkowicz, K. Miernik, A. Zykov, S. Dudin and V. Farenik: Surface and Coatings Technology Vol. 125 (2000), pp.341-346.

DOI: 10.1016/s0257-8972(99)00609-x

[25] G. N. Mark: DC-Pulse Power Supplies (MELEC, Ottersweier, Germany 2003).

[26] J. Lin: The Superior Advantages of SPIK Pulsed DC Power Controller (Shen Chang Electric Co. Ltd., Taiepi, Taiwan 2004).

[27] K. Yukimura, T. Muraho, M. Kumagai, H. Saito, M. Kohata and T. Maruyama: Nuclear Instruments and Methods in Physics Research B Vol. 206 (2003), pp.745-748.

[28] R. Messier, A.P. Giri and R.A. Roy: J. Vac. Sci. Technol. A Vol. 2 (1983), pp.500-503.

In order to see related information, you need to Login.