Electrochemical Synthesis for Uniform and Large-Scale Zinc Oxide Nano Structure Films


Article Preview

Three different kinds of zinc oxide (ZnO) nanostructure films have been synthesized on an indium tin oxide (ITO) glass substrate by electrochemical method with adjusting the concentration of the electrolyte, deposition time and temperature. X-ray diffraction (XRD), scanning electron microscopy (SEM), high resolution transmission electron microscopy (HR-TEM) and photoluminescence (PL) spectrum have been used to determine the characteristics of these nanostructures. The results show that concentration of the electrolyte is one of the most important factors that determine the morphologies of ZnO films. Nanobuds, nanorods, flakes are obtained with the electrolyte concentration increasing. Nanobuds and nanorods have no significant changes with the deposition time prolonged while the flakes grow bigger and thicker. The flakes merge together at high temperature while nanobuds remain unchanged except getting larger and sparser. Nanobuds and nanorods show single crystal patterns while the flakes are composted by multi crystals. The reasons forming such different morphology were discussed according to crystal growth theory. The PL spectra of these ZnO films are quite different according to various microstructures. The film with flake structure has a significant widen near edge emission peak with the depressed visible emission, which may have potential applications on optoelectronic devices and sensors.



Advanced Materials Research (Volumes 194-196)

Edited by:

Jianmin Zeng, Taosen Li, Shaojian Ma, Zhengyi Jiang and Daoguo Yang




W. Zhang et al., "Electrochemical Synthesis for Uniform and Large-Scale Zinc Oxide Nano Structure Films", Advanced Materials Research, Vols. 194-196, pp. 429-435, 2011

Online since:

February 2011




[1] N. Izyumskaya, V. Avrutin, Ü Özgür, Y. I. Alivov and H. Morkoc: Phys. Stat. Sol. (b) Vol. 244 (2007), p.1439.

DOI: https://doi.org/10.1002/pssb.200675101

[2] Elaine Lai, Woong Kim, and Peidong Yang: Nano Res Vol. 1 (2008), p.123.

[3] M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y.Y. Wu, H. Kind, E. Weber, R. Russo and P. D. Yang: Science Vol. 292 (2001), p.1897.

[4] X. D. Wang, J. Zhou, J. H. Song, J. Liu, N. S. Xu, and Z. L. Wang: Nano Lett Vol. 6 (2006), p.2768.

[5] B. Weintraub, Y. G. Wei, and Z. L. Wang: Angew. Chem. Int. Vol. 48 (2009), p.1.

[6] P. H. Yeh, Z. Li, and Z. L. Wang: Adv. Mater. Vol. 21( 2009), p.1.

[7] Y. N. Xia, P.D. Yang, Y. G. Sun, Y. Y. Wu, B. Mayers, B. Gates, Y. D. Yin, F. Kim and H. Q. Yan: Adv. Mater Vol. 15 (2003), p.353.

[8] Z. W. Pan, Z. R. Dai and Z. L. Wang: Science Vol. 291 (2001), p. (1947).

[9] X. D. Wang, C. J. Summers and Z. L. Wang: Nano Lett. Vol. 4 (2004), p.423.

[10] J. H. He, J. H. Hsu, C. W. Wang, H. N. Lin, L. J. Chen, and Z. L. Wang: J. Phys. Chem. B, Vol. 110 (2006), p.50.

[11] J. G. Wen, J. Y. Lao, D. Z. Wang, T. M. Kyaw, Y. L. Foo and Z. F. Ren: Chem. Phys. Lett. Vol. 372 (2003), p.717.

[12] B. Xiang, P. W. Wang, X. Z. Zhang, S. A. Dayeh, D. P. R. Aplin, C. Soci, D. P. Yu, and D. L. Wang: Nano Lett. Vol. 7(2007), p.323.

[13] D. Bekermann, A. Gasparotto, D. Barreca, L. Bovo, A. Devi, R. A. Fischer, O. I. Lebedev, C. Maccato, E. Tondello and G. V. Tendeloo: Crystal Growth & Design Vol. 10(2010), p. (2011).

DOI: https://doi.org/10.1021/cg1002012

[14] M. J. Height, L. Mädler, S. E. Pratsinis and F. Krumeich: Chem. Mater. Vol. 18(2006), p.572.

[15] W. B. Wu, G. D. Hu, S. G. Cui, Y. Zhou and H.T. Wu: Cryst. Growth Des. Vol. 8(2008), p.4014.

[16] L. E. Greene, M. Law, D. H. Tan, M. Montano,  J. Goldberger, G. Somorjai, P. D. Yang: Nano Lett. Vol. 5(2005), p.1231.

[17] J. Elias, R. Tena-Zaera and C. Lévy-Clément: Journal of Electroanalytical Chemistry Vol. 621 (2008), p.171.

[18] Th. Pauportéa, I. Jirka: Electrochimica Acta Vol. 54 (2009), p.7558.

[19] G. R. Li, C. R. Dawa, Q. Bu , F. L. Zhen, X. H. Lu, Z. H. Ke, H. E. Hong, C. Z. Yao , P. Liu and Y. X. Tong: Electrochemistry Communications Vol. 9 (2007), p.863.

[20] Y. Leprince-Wang, G.Y. Wang, X. Z. Zhang, D. P. Yu: Journal of Crystal Growth 287 (2006), p.89.

[21] O. Lupan, T. Pauporté, L. Chow, B. Viana, F. Pellé, L. K. Ono, B. Roldan Cuenya and H. Heinrich: Applied Surface Science Vol. 256 (2010), p.1895.

DOI: https://doi.org/10.1016/j.apsusc.2009.10.032

[22] G. R. Li, X. H. Lu, D. L. Qu, C. Z. Yao, F. L. Zheng, Q. Bu, C. R. Dawa, and Y. X. Tong: J. Phys. Chem. C Vol. 111(2007), p.6678.

[23] L. Armelao, F. Heigl, A. Jürgensen, R. I. R. Blyth, T. Regier, X.T. Zhou and T. K. Sham: J. Phys. Chem. C Vol. 111(2007), p.10194.

[24] D. Pradhan and K. T. Leung: Langmuir Vol. 24(2008), p.9707.

[25] D. Pradhan and K. T. Leung: J. Phys. Chem. C Vol. 112(2008), p.1357.

[26] T. Yoshida, K. Terada, D. Schlettwein, T. Oekermann, T. Sugiura and H. Minoura: Adv. Mater. Vol. 12(2000), p.1214.

Fetching data from Crossref.
This may take some time to load.