Synthesis and Field Emission of ZnO Bundles with High Aspect Ratio by Solution Method

Abstract:

Article Preview

ZnO nanowires with the diameters ranging from 20 to 40 nm and lengths in the range 3-5 μm were synthesized on ITO coated glass substrate by a low temperature (80 °C) solution method. The average aspect ratio (h/r) reached 150. Owing to the van der waals force the neighborly nanowires close up to form tower-like ZnO bundles. The field emission of the ZnO bundles shows a turn-on field of 7.1 V/μm at a current density of 10 μA/cm2. The threshold field is 11.3 V/μm at a current density of 10 mA/cm2. The good field emission performance is attributed to the high aspect ratio and tower-like shape.

Info:

Periodical:

Advanced Materials Research (Volumes 194-196)

Edited by:

Jianmin Zeng, Taosen Li, Shaojian Ma, Zhengyi Jiang and Daoguo Yang

Pages:

589-593

DOI:

10.4028/www.scientific.net/AMR.194-196.589

Citation:

J. Liu et al., "Synthesis and Field Emission of ZnO Bundles with High Aspect Ratio by Solution Method", Advanced Materials Research, Vols. 194-196, pp. 589-593, 2011

Online since:

February 2011

Export:

Price:

$35.00

[1] S. Xu, Y. Qin, C. Xu, Y. Wei, R. Yang and Z. L. Wang: Nature Nanotechnology, Vol. 5 (2010), P. 366.

[2] P. Feng, J. Y. Zhang, Q. H. Li, and T. H. Wang: Appl. Phys. Lett., Vol. 88 (2006), P. 153107.

[3] A. I. Hochbaum, P. D. Yang: Chem. Rev., Vol. 110 (2010), P. 527.

[4] C. J. Lee, T. J. Lee, S. C. Lyu, Y. Zhang, H. Ruh, H. J. Lee, Appl. Phys. Lett., Vol. 81 (2002), P. 19.

[5] Z. M. Xiao, J. C. She, Z. B. Li, Y. H. Yang, G. W. Yang, S. Z. Deng, J. Chen, N. S. Xu, J. Appl. Phys., Vol. 106, (2009), P. 014310.

[6] N. S. Xu, S. E. Huq, Mater. Sci. Eng. R. Vol. 48, (2005), P. 47.

[7] Z. W. Pan, Z. R. Dai, Z. L. Wang, Science, Vol. 291, (2001), P. (1947).

[8] Z. R. Dai, Z. W. Pan, Z. L. Wang, Adv. Funct. Mater. Vol. 13, (2003), P. 9.

[9] J. L. Yang, S. J. An, W. I. Park, G. C. Yi, W. Y. Choi, Adv. Mater. Vol. 16, (2004), P. 1661.

[10] Y. H. Yang, C. X. Wang, B. Wang, Z. Y. Li, J. Chen, D. H. Chen, N. S. Xu, G. W. Yang, J. B. Xu, Appl. Phys. Lett. Vol. 87, (2005), P. 183109.

[11] C. Y. Geng, Y. Jiang, Y. Yao, X. M. Meng, J. A. Zapien, C. S. Lee, Y. Lifshitz, S. T. Lee, Adv. Funct. Mater. Vol. 14, (2004), 589.

[12] L. Vayssieres, Adv. Mater. Vol. 15, (2003), P. 464.

[13] L. E. Greene, M. Law, J. Goldberger, F. Kim, J. C. Johnson, Y. F. Zhang, R. J. Saykally, P. D. Yang, Angew. Chem. Int. Ed. Vol. 42, (2003), P. 3031.

[14] B. S. Kang, S. J. Pearton and F. Ren, Appl. Phys. Lett. Vol. 90, (2007), P. 083104.

[15] J. Liu, J. C. She, S. Z. Deng, J. Chen and N. S. Xu, J. Phys. Chem. C., Vol. 112, (2008), P. 11685.

[16] L. E. Greene, B. D. Yuhas, M. Law, D. Zitoun and P. D. Yang, Inorg. Chem., Vol. 45, (2006), P. 7535.

[17] Y. Sun, D. J. Riley and M. N. R. Ashfold, J. Phys. Chem. B, Vol. 110, (2006), P. 15186.

In order to see related information, you need to Login.