Synthesis and Field Emission of ZnO Bundles with High Aspect Ratio by Solution Method


Article Preview

ZnO nanowires with the diameters ranging from 20 to 40 nm and lengths in the range 3-5 μm were synthesized on ITO coated glass substrate by a low temperature (80 °C) solution method. The average aspect ratio (h/r) reached 150. Owing to the van der waals force the neighborly nanowires close up to form tower-like ZnO bundles. The field emission of the ZnO bundles shows a turn-on field of 7.1 V/μm at a current density of 10 μA/cm2. The threshold field is 11.3 V/μm at a current density of 10 mA/cm2. The good field emission performance is attributed to the high aspect ratio and tower-like shape.



Advanced Materials Research (Volumes 194-196)

Edited by:

Jianmin Zeng, Taosen Li, Shaojian Ma, Zhengyi Jiang and Daoguo Yang




J. Liu et al., "Synthesis and Field Emission of ZnO Bundles with High Aspect Ratio by Solution Method", Advanced Materials Research, Vols. 194-196, pp. 589-593, 2011

Online since:

February 2011




[1] S. Xu, Y. Qin, C. Xu, Y. Wei, R. Yang and Z. L. Wang: Nature Nanotechnology, Vol. 5 (2010), P. 366.

[2] P. Feng, J. Y. Zhang, Q. H. Li, and T. H. Wang: Appl. Phys. Lett., Vol. 88 (2006), P. 153107.

[3] A. I. Hochbaum, P. D. Yang: Chem. Rev., Vol. 110 (2010), P. 527.

[4] C. J. Lee, T. J. Lee, S. C. Lyu, Y. Zhang, H. Ruh, H. J. Lee, Appl. Phys. Lett., Vol. 81 (2002), P. 19.

[5] Z. M. Xiao, J. C. She, Z. B. Li, Y. H. Yang, G. W. Yang, S. Z. Deng, J. Chen, N. S. Xu, J. Appl. Phys., Vol. 106, (2009), P. 014310.

[6] N. S. Xu, S. E. Huq, Mater. Sci. Eng. R. Vol. 48, (2005), P. 47.

[7] Z. W. Pan, Z. R. Dai, Z. L. Wang, Science, Vol. 291, (2001), P. (1947).

[8] Z. R. Dai, Z. W. Pan, Z. L. Wang, Adv. Funct. Mater. Vol. 13, (2003), P. 9.

[9] J. L. Yang, S. J. An, W. I. Park, G. C. Yi, W. Y. Choi, Adv. Mater. Vol. 16, (2004), P. 1661.

[10] Y. H. Yang, C. X. Wang, B. Wang, Z. Y. Li, J. Chen, D. H. Chen, N. S. Xu, G. W. Yang, J. B. Xu, Appl. Phys. Lett. Vol. 87, (2005), P. 183109.

[11] C. Y. Geng, Y. Jiang, Y. Yao, X. M. Meng, J. A. Zapien, C. S. Lee, Y. Lifshitz, S. T. Lee, Adv. Funct. Mater. Vol. 14, (2004), 589.

[12] L. Vayssieres, Adv. Mater. Vol. 15, (2003), P. 464.

[13] L. E. Greene, M. Law, J. Goldberger, F. Kim, J. C. Johnson, Y. F. Zhang, R. J. Saykally, P. D. Yang, Angew. Chem. Int. Ed. Vol. 42, (2003), P. 3031.

[14] B. S. Kang, S. J. Pearton and F. Ren, Appl. Phys. Lett. Vol. 90, (2007), P. 083104.

[15] J. Liu, J. C. She, S. Z. Deng, J. Chen and N. S. Xu, J. Phys. Chem. C., Vol. 112, (2008), P. 11685.

[16] L. E. Greene, B. D. Yuhas, M. Law, D. Zitoun and P. D. Yang, Inorg. Chem., Vol. 45, (2006), P. 7535.

[17] Y. Sun, D. J. Riley and M. N. R. Ashfold, J. Phys. Chem. B, Vol. 110, (2006), P. 15186.

Fetching data from Crossref.
This may take some time to load.