Hydrothermal Preparation and Formation Mechanism of ZnSn(OH)6 Cubic Aggregates and Zn2SnO4 Octahedra


Article Preview

ZnSn(OH)6 hierarchical cubes and Zn2SnO4 octahedra have been synthesized through a rapid, template-free, one-pot hydrothermal approach using zinc acetate, tin chloride and sodium hydroxide. ZnSn(OH)6 aggregates with cubic morphology and uniform size distribution have been successfully synthesized via aggregation-mediated crystallization. Through adjusting the hydrothermal parameters, Zn2SnO4 octahedra were obtained at a higher temperature. The formation of Zn2SnO4 octahedra undergone a transformation from ZnSn(OH)6 cubes. The as-synthesized products were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM) and differential scanning calorimetric analysis (DSC) and thermogravimetric analysis (TG).



Advanced Materials Research (Volumes 194-196)

Edited by:

Jianmin Zeng, Taosen Li, Shaojian Ma, Zhengyi Jiang and Daoguo Yang






L. X. Yang et al., "Hydrothermal Preparation and Formation Mechanism of ZnSn(OH)6 Cubic Aggregates and Zn2SnO4 Octahedra", Advanced Materials Research, Vols. 194-196, pp. 693-699, 2011

Online since:

February 2011




[1] J. F. Banfield, S. A. Welch, H. Z. Zhang, T. T. Ebert, R. L. Penn: Science Vol. 289 (2000), p.751.

[2] V. Privman, D. V. Goia, J. Park, E. Matijević: J Colloid Interf Sci Vol. 213(1999), p.36.

[3] R. L. Penn, J. F. Banfield: Geochim et Cosmochm Acta Vol. 63(1999) p.1549.

[4] M. Niederberger, H. Cölfen: Phys Chem Chem Phys Vol. 8(2006) p.3271.

[5] H. Cölfen, M. Antonietti: Angew Chem Int Ed Vol. 44(2005) p.5576.

[6] M. Antonietti, G. A. Ozin: Chem Eur J Vol. 10(2004) p.28.

[7] J. H. Zhou, H. P. Lin, C. Y. Mou: Adv Mater Vol. 15(2003) p.621.

[8] A. W. Xu, M. Antonietti, H. Cölfen, Y. P. Fang: Adv Func Mater Vol. 16(2006) p.903.

[9] T. X. Wang, H. Cölfen, M. Antonietti: J Am Chem Soc Vol. 127(2005) p.3246.

[10] Z. P. Zhang, H. P. Sun, X. Q. Shao, D. F. Li, H. D. Yu, M. Y. Han: Adv Mater Vol. 17(2005) p.42.

[11] S. H. Yu, H. Cölfen, K. Tauer, M. Antonietti: Nat Mater Vol. 4(2005) p.51.

[12] L. M. Qi, H. Cölfen, M. Antonietti: Chem Mater Vol. 12(2000) p.2392.

[13] J. H. Zhan, X. G. Yang, D. W. Wang, S. D. Li, Y. Xie, Y. N. Xia, Y. T. Qian: Adv Mater Vol. 12(2000) p.1348.

[14] C. Pacholski, A. Kornowski, H. Weller: Angew Chem Int Ed Vol. 41(2002) p.1188.

[15] J. -W. Lee, C. -H. Lee: J Supercrit Fluid Vol. 55 (2010) p.252.

[16] C. Wang, X. Wang, J. Zhao, B. Mai, G. Sheng, P. Peng, J. Fu: J Mater Sci Vol. 37(2002) p.2989.

[17] I. Stambolova, K. Konstantinov, D. Kovacheva, T. P. Peshev, J. donchev: Solid State Chem Vol. 128(1997) p.305.

[18] D. L. Young, D. L. Williamson, T. J. Coutts: J Appl Phys Vol. 91(2002) p.1464.

[19] Q. R. Hu, P. Jiang, H. Xu, Y. Zhang, S. L. Wang, X. Jia, W. H. Tang: J Alloy Compd Vol. 484 (2009) p.25.

[20] L. Wang, X. Zhang, X. Liao, W. Yang: Nanotechnology Vol. 16(2005) p.2928.

[21] H. Y. Chen, J. X. Wang, H. C. Yu, H. X. Yang, S. S. Xie, J. Q. Li: J Phys Chem B Vol. 109(2005) p.2573.

[22] J. X. Wang, S. S. Xie, H. J. Yuan, X. Q. Yan, D. F. Liu, Y. Gao, Z. P. Zhou, L. Song, L. F. Liu, X. W. Zhao, X. Y. Dou, W. Y. Zhou, G. Wang: Solid State Commun Vol. 131(2004) p.435.

DOI: 10.1016/j.ssc.2004.06.009

[23] J. X. Wang, S. S. Xie, Y. Gao, X. Q. Yan, D. F. Liu, H. J. Yuan, Z. P. Zhou, L. Song, L. F. Liu, W. Y. Zhou, G. Wang: J Cryst Growth Vol. 267(2004) p.177.

[24] A. Annamalai, D. Carvalho, K.C. Wilson, M. J. Lee: Mater Charact Vol. 61 (2010) p.873.

[25] I. Stambolova, A. Toneva, V. Blaskov, D. Radev, Y. Tsvetanova, S. Vassilev, P. Peshev: J Alloy Compd Vol. 391(2005) p. L1.

DOI: 10.1002/chin.200525022

[26] Z. Y. Yuan, F. Huang, J. T. Sun, Y. H. Zhou: Chem Lett (2002) p.408.

[27] Z. G. Lu, Y. G. Tang: Mater Chem Phys Vol. 92(2005) p.5.

[28] J. Fang, A. Huang, P. Zhu, N. Xu, J. Xie, J. Chi, S. Feng, R. Xu, M. Wu: Mater Res Bull Vol. 36(2001) p.1391.

In order to see related information, you need to Login.