Dynamic Propagation of Mode Ⅲ Interfacial Crack Subjected to Variable Moving Concentrated Loads


Article Preview

Dynamic propagation of mode Ⅲ crack under variable moving loads on the crack surface is investigated using the theory of complex functions. Using the approaches of self-similar functions, the problems are readily transformed into Riemann-Hilbert problems. The paper presents a new mechanical model for dynamic crack propagation, in which the crack is under the conditions that the variable concentrated loads Pt3/x2 and Px/t move along x-axial with velocity β. At last, analytical solutions of stress, displacement and stress intensity factor are attained, respectively.



Advanced Materials Research (Volumes 197-198)

Edited by:

Huaiying Zhou, Tianlong Gu, Daoguo Yang, Zhengyi Jiang, Jianmin Zeng




C. Jin et al., "Dynamic Propagation of Mode Ⅲ Interfacial Crack Subjected to Variable Moving Concentrated Loads", Advanced Materials Research, Vols. 197-198, pp. 1712-1717, 2011

Online since:

February 2011




[1] A. C. Erigen, E. S. Suhubi: Elastodynamics Vol. 2. Linear Theory. (New York San Francisco London: Academic Press, 1975).

[2] G. C. Sih: Mechanics of Fracture 1. Methods of analysis and solutions of crack problems, (Leyden: Noordhoff International Publishing, 1977).

[3] G. P. Cherepanov: Mechanics of brittle fracture. (NewYork: Mc Graw Hill International Book Company, 1979).

[4] F. Erdogan: Crack propagation theories, fracture II. (NewYork: Academic Press, 1968).

[5] G. C. Sih: Int. J. Frac., Vol. 1(1968), pp.51-68.

[6] B. V. Kostrov: J. Applied Math. Mech., Vol. 28(1964), pp.1077-1087.

[7] N. Lv, J. Cheng, Y. Cheng: Theo. App. Frac. Mech, Vol. 36(2001), pp.219-231.

[8] K. B. Broberg: Arch. Fur. Fysik, 1960, Vol. 18(1960), pp.159-192.

[9] T. Fan: Quotation of fracture dynamics. (Beijing: Publisher of Beijing Science and Technology, 1990(inChinese).

[10] C Rubin-Gonzalea and J J. Mason: J. Mech. Phys. Sol. Vol. 48(2000), pp.889-925.

[11] G.C. Sih, B. MacDonald: Eng. Frac. Mech., Vol. 6(1974), pp.361-386.

[12] G. C. Sih: Handbook of stress intensity factors. (Bethlehem: Lehigh University, 1973).

[13] G.C. Sih. Mechanics of fracture initiation and propagation. (Boston: Kluwer Academic Publisher, 1991).

[14] Y H. Wang: Eng. Frac. Mech., Vol. 42(1992), pp.45-50.

[15] Y H Wang, Y K Cheung, C W. Woo: Eng. Frac. Mech, Vol. 42(1992), pp.971-976.

[16] W. G. Knauss: Int.J. Frac., Vol. 25(1987), pp.35-91.

[17] N. Lv, J. Cheng, Y. Cheng: Appl. Math. Mech., Vol. 28(2007), pp.501-510.

[18] N. Lv, J. Cheng, Y. Cheng: J. Appl. Mech., Vol. 21(2004), pp.156-160.

[19] N. Lv, Y. Cheng, X. Tian: J. Cheng: J. Harbin Inst. Tech., Vol. 38(2006), pp.1310-1313.

[20] N. I. Muskhelishvili: Singular Integral Equations. (Moscow: Nauka, 1968).

[21] N. I. Muskhelishvili: Some fundamental problems in the mathematical theory of elasticity (Moscow: Nauka, 1966).

[22] C. Atkinson: Int. J. Engng. Sci., Vol. 13 (1975), pp.491-506.

[23] C. Atkinson: Int. J. Engng. Sci., Vol. 3 (1965), pp.77-91.

[24] R. F. Hoskins: Generalized function (NewYork: Ellis Horwood, 1979).

[25] X. Wang: Singular functions and their applications in mechanic s(Beijing: Scientific Press, 1993(in Chinese).

[26] F. D. Gahov: Boundary-value problem s(Moscow: Fizmatgiz, 1963).

[27] G. C. Sih: Mechanics of fracture 4, elastodynamics crack problems (Leyden: Noordhof International Publishing, 1977).

[28] R. P. Kanwal, D. L. Sharma: J. Elasticity, Vol. 6(1976), pp.405-418.