Vibration Response Analysis of a Stepped Beam with Crack Using Composite Element Method

Abstract:

Article Preview

The composite element method is utilized to discretise a stepped Euler-Bernoulli beam with a crack. The local stiffness reduction due to the crack is introduced by using a simplified crack model. The finite element equation for the forced vibration analysis is obtained using the composite element method (CEM). The forced vibration response of the cracked stepped beam is numerically calculated using Newmark integration method. Numerical results indicate that the position and depth of a crack affects the low and high natural frequencies and modes of a cantilever beam, respectively. And the position of the crack has significant effects on the dynamic responses of the beam.

Info:

Periodical:

Advanced Materials Research (Volumes 199-200)

Edited by:

Jianmin Zeng, Zhengyi Jiang, Taosen Li, Daoguo Yang and Yun-Hae Kim

Pages:

835-838

DOI:

10.4028/www.scientific.net/AMR.199-200.835

Citation:

X. B. Lu et al., "Vibration Response Analysis of a Stepped Beam with Crack Using Composite Element Method", Advanced Materials Research, Vols. 199-200, pp. 835-838, 2011

Online since:

February 2011

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.