Geographical Distribution and Diversity of Moderately Thermophilic Members of the Thermoplasmatales


Article Preview

Oxidation of ferrous iron by moderately thermophilic species of the genus Ferroplasma is of considerable potential value in commercial bioleaching operations. A collection of strains was enriched and isolated from a number of natural or industrial acidic sites at 45 and 55°C. Phylogenetic analysis based on 16S rRNA gene sequencing indicated that all strains were members of the Order Thermoplasmatales. Stains BH8 and BH12 showed 98% sequence similarity with Ferroplasma acidiphilum strain YT and DR1 respectively. Strains BH7 and BH10 were closely related to the moderately thermophilic species Ferroplasma cupricumulans. Strain BH9, a moderately thermophilic organotroph, was unrelated to previously described species and probably represents a novel genus. Strains BH8 and BH12 showed some unique physiological differences to the type species F. acidiphilum. Unlike F. acidiphilum, both strains were moderately thermophilic with a temperature range for strains BH8 and BH12 of 24 to 61°C and 27 to 49°C respectively. Strain BH12 grew organotrophically on Darland’s Medium containing glucose and yeast extract and chemomixotrophically on Darland’s Medium supplemented with ferrous sulphate. Moderately thermophilic species of Ferroplasma and Ferroplasma-like genera appear widely distributed geographically and possess considerable physiological and phylogenetic diversity that may benefit industrial bioleaching processes.



Advanced Materials Research (Volumes 20-21)

Edited by:

Axel Schippers, Wolfgang Sand, Franz Glombitza and Sabine Willscher




R. Hawkes et al., "Geographical Distribution and Diversity of Moderately Thermophilic Members of the Thermoplasmatales", Advanced Materials Research, Vols. 20-21, pp. 405-408, 2007

Online since:

July 2007




[1] A. Segerer, T.A. Langworthy and K.O. Stetter: Syst. Appl. Microbiol. Vol. 10 (1988), p.161.

[2] C. Shleper, G. Puehler, I. Holz, A. Gambacorta, D. Janekovic, U. Santarius, H-P. Klenk and W. Zillig: J. Bacteriol. Vol. 177 (1995), p.7050.


[3] O.V. Golyshina, T.A. Pivovarova, G.I. Karavaiko, T.F. Kondrat'eva, E.R.B. Moore, W.R. Abraham, H. Lünsdorf, K.N. Timmis, M.M. Yakimov and P.N. Golyshin: Int. J. Syst. Evol. Microbiol. Vol. 50 (2000), p.997.

[4] M. Dopson, C. Baker-Austin, A. Hind, J.P. Bowman and P. Bond: Appl. Environ. Microbiol. Vol. 70 (2004), p. (2079).

[5] R.B. Hawkes, P.D. Franzmann, G. O'Hara and J.J. Plumb: Extremophiles Vol. 10 (2006), p.525.

[6] G. Darland, T.D. Brock, W. Samsonoff and S.F. Conti. Science Vol. 170 (1970), p.1416.

[7] J.J. Plumb, B. Gibbs, M.B. Stott, W.J. Robertson, W.J. Gibson, P.D. Nichols, H.R. Watling and P.D. Franzmann: Min. Eng. Vol. 15 (2001), p.787.

[8] T.Z. DeSantis, P. Hugenholtz, K. Keller, E. L. Brodie, N. Larsen, Y. M. Piceno, R. Phan and G. L. Andersen: Nucleic Acids Res 34 (2006), p.394.

[9] T.Z. DeSantis, P. Hugenholtz, N. Larsen, M. Rojas, E.L. Brodie, K. Keller, T. Huber, D. Dalevi, P. Hu and G.L. Andersen: Appl. Environ. Microbiol. Vol. 72 (2006), p.506.

[10] T.H. Jukes and C.R. Cantor, in: Mammalian protein metabolism, edited by H.N. Munro, Academic Press, NY (1969).

[11] W. Ludwig, O. Strunk, R. Westram, L. Richter, H. Meier, A. Buchner, T. Lai, S. Steppi, G. Jobb, W. Förster, I. Brettske, S. Gerber, A.W. Ginhart, O. Gross, S. Grumann, S. Hermann, R. Jost, A. König, T. Liss, R. Lüβmann, M. May, B. Nonhoff, B. Reichel, R. Strehlow, A. Stamatakis, N. Stuckmann, A. Vilbig, M. Lenke, T. Ludwig, A. Bode and K. Schleifer: Nucleic Acids Res. Vol. 34 (2004).

[12] D.A. Ratkowsky, R.K. Lowry, T. McMeekin, A.N. Stokes, R.E. Chandler: J. Bacteriol. Vol. 154 (1983), p.1222.

[13] D.J. Baumler, K.C. Jeong, B.G. Fox, J.F. Banfield and C.W. Kaspar: Res. Microbiol. Vol. 156 (2005), p.492.

[14] N. Okibe, M. Gericke, K.B. Hallberg and B.D. Johnson: Appl. Environ. Microbiol. Vol. 69 (2003), p. (1936).

[15] B.J. Baker and J.F. Banfield: FEMS Microbiol. Ecol. Vol. 44 (2003), p.139.