Lead and Gold Removal Using Sugar-Beet Pectin Gels with and without Immobilized Fucus Vesiculosus


Article Preview

Sugar-beet pectin gels are a novel material with applications in heavy and precious metal removal and biomass immobilization which are similar to those of alginate. This paper presents the experimental results of the kinetics of Pb(II) and Au(III) batch removal with these gels, with and without immobilized biomass of the brown algae Fucus vesiculosus. The evolution of the metal concentration, solution pH and Ca2+ liberation was determined. The biomass was characterized before and after the metal removal using SEM-EDX, FESEM, FETEM, XRD and FTIR techniques. The Pb(II) removal followed a typical biosorption kinetics with a final equilibrium metal concentration. The immobilized algae had different biosorptive behaviour than both the original sugar-beet pectin gels and the free biomass. There was no Au(III) removal with the pectin gels without algae. In the case of the immobilized biomass, the Au(III) recovery occurred in two stages, where the biosorption was followed by the reduction of the Au(III) to Au(0) due to the presence of the own algae. The Au(0) precipitated preferably on the surface of the algal biomass and in the form of colloidal gold in the solution and entrapped within the pectin gel matrix.



Advanced Materials Research (Volumes 20-21)

Edited by:

Axel Schippers, Wolfgang Sand, Franz Glombitza and Sabine Willscher




Y. N. Mata et al., "Lead and Gold Removal Using Sugar-Beet Pectin Gels with and without Immobilized Fucus Vesiculosus", Advanced Materials Research, Vols. 20-21, pp. 599-602, 2007

Online since:

July 2007




[1] Volesky, B: Sorption and Biosorption (BV-Sorbex, Inc., Canada, 2003).

[2] N. Kuyucak and B. Volesky: Biorecovery. Vol. 1 (1989), p.189.

[3] E. Romera, F. Gonzalez, A. Ballester, M.L. Blazquez and J.A. Munoz: Crit. Rev. Biotechnol. Vol. 26 (2006), p.223.

[4] V.M. Dronnet, M.A.V. Axelos, C.M.G.C. Renard and J. -F. Thibault: Carbohyd. Polym. Vol. 35 (1998), p.239.

[5] C.D. May: Carbohyd. Polym. Vol. 12 (1990), p.79.

[6] P. Harel, G. La Quérière, L. Mignot and G.A. Junter: Inc. Crop. Prod. Vol. 11 (2000) p.259.

[7] E. Romera, F. Gonzalez, A. Ballester, M.L. Blazquez and J.A. Munoz: Bioresource Technol. (2007) Accepted for publication.

[8] Y.N. Mata, Efecto de la inmovilización de algas en geles de pectina sobre la bioadsorción de metales. (PhD Dissertation. Universidad Complutense de Madrid. 2006).

DOI: 10.21840/siic/144243

[9] R.H. Crist, J.R. Martin, P.W. Guptil, J.M. Eslinger and D.R. Crist: Environ. Sci. Technol. Vol. 24 (1990), p.337.

[10] J.P. Chen, L. Hong, S. Wu and L. Wang: Langmuir. Vol. 18 (2002), p.9413.

[11] O. Raize, Y. Argaman and S. Yannai: Biotechnol. Bioeng. Vol. 87 (2004), p.451.

[12] J. Turkevich: Gold Bull. Vol. 18 (1985), p.125.

[13] E. Torres, Y.N. Mata, M.L. Blazquez, A. Ballester, F. Gonzalez and J.A. Munoz: Langmuir Vol. 21 (2005), p.7951.

[14] N. Creamer, V. Baxter-Plant, J. Henderson, M. Potter and L.E. Macaskie: Biotechnol. Lett. Vol. 28 (2006), p.1475.

[15] D. Mandal, M. Bolander, D. Mukhopadhyay, G. Sarkar and P. Mukherjee: Appl. Microbiol. Biotechnol. Vol. 69 (2006), p.485.

[16] M.M. Figueira, B. Volesky, B. and H.J. Mathieu: Environ. Sci. Technol. Vol. 33 (1999), p.1840.

[17] S.S. Shankar, A. Ahmad, R. Parischa and M. Sastry: J. Mater. Chem. Vol. 13 (2003), p.1822 a. b.

Fetching data from Crossref.
This may take some time to load.