A New Time Series Regression Method Based on Support Vector Machine Plus and Genetic Algorithm

Abstract:

Article Preview

Support vector machine (SVM) is gaining popularity on time series analysis due to its advanced theory foundation. The introduction of the hidden information on the basis of SVM is called support vector machine plus (SVM+). However, the hidden information which provides something closely associated with the time series increases the difficulty of training SVM model. In this paper, a new time series regression method GA-RSVM+ is put forward, in which Genetic Algorithm (GA) is used to search the optimal combination of free parameters. The experimental result shows that GA-RSVM+ can accurately determine the parameters on its own and achieve best regression precision. This method has a clear advantage in the regression analysis of time series.

Info:

Periodical:

Advanced Materials Research (Volumes 201-203)

Edited by:

Daoguo Yang, Tianlong Gu, Huaiying Zhou, Jianmin Zeng and Zhengyi Jiang

Pages:

2277-2280

DOI:

10.4028/www.scientific.net/AMR.201-203.2277

Citation:

W. Sun et al., "A New Time Series Regression Method Based on Support Vector Machine Plus and Genetic Algorithm", Advanced Materials Research, Vols. 201-203, pp. 2277-2280, 2011

Online since:

February 2011

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.