Anti-Control of Chaos of Single Time Scale Brushless DC Motor System with Unknown Parameters Using Adaptive Control


Article Preview

In this paper, an adaptive feedback control method is proposed for the anti-control of chaos of single time scale brushless DC motor system with unknown parameters based on model-matching. The well-known Rössler chaotic system is considered as the reference system. The chaotification is achieved choosing an appropriate control law and a parametric updating law using Lyapunov stability theory, which provides the stability of the resulting adaptive system and the convergence of the tracking errors to zero. The numerical simulation results show the effectiveness of the proposed method.



Advanced Materials Research (Volumes 211-212)

Edited by:

Ran Chen






F. Akhgari et al., "Anti-Control of Chaos of Single Time Scale Brushless DC Motor System with Unknown Parameters Using Adaptive Control", Advanced Materials Research, Vols. 211-212, pp. 736-741, 2011

Online since:

February 2011




[1] X. Wu, J. Lu, H. Iu and S. Wong, Suppression and generation of chaos for a three-dimensional autonomous system using parametric perturbations, Chaos Solitons Fractals, 31: 811–819, (2007).

DOI: 10.1016/j.chaos.2005.10.050

[2] Z. M. Ge , C. M. Chang and Y. S. Chen, Anti-control of chaos of single time-scale brushless dc motors and chaos synchronization of different order systems, Chaos, Solitons and Fractals, 27, 1298–1315, (2006).

DOI: 10.1016/j.chaos.2005.04.095

[3] R. T. Yang, Y. G. Hong, H. S. Qin and G. R. Chen, Anticontrol of chaos for dynamic systems in p-normal form: a homogeneity-based approach, Chaos Solitons Fractals, 25: 687–697, (2005).

DOI: 10.1016/j.chaos.2004.11.090

[4] H. Huijberts, H. Nijmeijer and R. Willems, System identification in communication with chaotic systems, IEEE Trans. Circuits Syst I, 47(6): 800–808, (2000).

DOI: 10.1109/81.852932

[5] S. Sinha and W. L. Ditto, Computing with distributed chaos, Phys Rev E, 60(1): 363–376, (1999).

[6] S. J. Schiff, K. D. Jerger, H. Duong, T. Chang, M. L. Spano and W. L. Ditto, Controlling chaos in the brain, Nature, 370: 615–620, (1994).

DOI: 10.1038/370615a0

[7] W. Yang, M. Ding, A. J. Mandell and E. Ott, Preserving chaos: control strategies to preserve complex dynamics with potential relevance to biological disorders, Phys Rev E, 51: 102–110, (1995).

DOI: 10.1103/physreve.51.102

[8] G. Chen, J. Q. Fang, Y. Hong and H. S. Qin, Introduction to chaos control and anti-control, In: Leung TP, Qin HS (eds) Advanced topics in nonlinear control systems, Chap 6. World Scientific, Singapore, p.193–245, (2001).

DOI: 10.1142/9789812798541_0006

[9] G. Chen and X. Dong, From chaos to order: methodologies, perspectives and applications, Singapore: World Scientific, (1998).

[10] I. T. Georgiou and I. B. Schwartz, Dynamics of large scale coupled structural/mechanical systems: A singular perturbation/proper orthogonal decomposition approach, SIAM J. Appl. Math., 59: 1178–1207, (1999).

DOI: 10.1137/s0036139997299802

[11] X. F. Wang, G. R. Chen and K. F. Man, Making a continuous-time minimum-phase system chaotic by using time-delay feedback, IEEE Trans Circuits Syst I, 48: 641–645, (2001).

DOI: 10.1109/81.922469

[12] L. Yang, Z. Liu and G. R. Chen, Chaotifying a continuous-time system via impulsive input, Int J Bifurc Chaos, 12: 1121–1128, (2002).

DOI: 10.1142/s0218127402004954

[13] H. G. Zhang, Z. L. Wang and D. Liu, Chaotifying fuzzy hyperbolic model using impulsive and nonlinear feedback control approaches, Int J Bifurc Chaos, 15: 2603–2610, (2005).

DOI: 10.1142/s021812740501354x

[14] D. Chen, H. Wang and G. Chen, Anti-control of Hopf bifurcation, IEEE Trans Circuits Syst I, 48: 661–672, (2001).

[15] J. G. Lu, Chaotic behavior in sampled-data control systems with saturating control, Chaos Solitons Fractals, 30: 147–155, (2006).

DOI: 10.1016/j.chaos.2005.08.191

[16] Q. F. Chen, Q. H. Zhong, Y. G. Hong and G. R. Chen, Generation and control of spherical circular attractors using switching schemes, Int J Bifurc Chaos, 17: 243–253, (2007).

DOI: 10.1142/s021812740701729x

[17] Z. Li, J. B. Park, G. R. Chen, Y. H. Joo and Y. H. Choi, Generating chaos via feedback control from a stable TS fuzzy system through a sinusoidal nonlinearity, Int J Bifurc Chaos, 12: 2283–2291, (2002).

DOI: 10.1142/s0218127402005844

[18] H. Asada and K. Youcef-Toumi, Direct drive robots: theory and practice, Cambridge, MA: MIT Press; (1987).

[19] S. Murugesan, An overview of electric motors for space applications, IEEE Trans Ind Electr Control Instrum, (1981) ; IECI-28(4).

DOI: 10.1109/tieci.1981.351050

[20] Z. M. Ge, C. M. Chang and Y. S. Chen, Anti-control of chaos of single time-scale brushless DC motor, Phil. Trans. R. Soc. A, (2006) 364, 2449-2462.

[21] N. Hemati, Strange attractors in brushless dc motors, IEEE Trans Circ Syst, (1994) ; 41(1): 40–5.

[22] N. Hemati, Dynamic analysis of brushless motors based on compact representations of the equations of motion, IEEE Trans Ind Appl Social Annual Meeting, (1993) ; 1: 51–8.

DOI: 10.1109/ias.1993.298903

In order to see related information, you need to Login.