MoSi2 Composites for High Temperature Structural Applications


Article Preview

In this paper, the basic limitations of superalloys’ in high temperature performances will be explained and then after giving the important properties of MoSi2, some interesting composites of this material will be discussed as a candidate structural material for gas turbine engines.



Edited by:

Zeng Zhu




Y. Uzunonat et al., "MoSi2 Composites for High Temperature Structural Applications", Advanced Materials Research, Vol. 214, pp. 103-107, 2011

Online since:

February 2011




[1] A.K. Vaseduvan, J.J. Petrovic: A Comparative Overview of Molybdenum Disilicide Composites, Materials Science and Engineering, A155, 1-17. (1992).

[2] Z. Yao, J.J. Stiglich, T.S. Sudarshan: Molybdenum Disilicide Materials and Their Properties, Material Modification Inc. (1998).

[3] J. K. Tein, T. Caulfield: Superalloys, Supercomposites, and Superceramics, Boston Academic Press, 775 p. (1989).

[4] ASM, Metals Handbook, Ninth Edition, Volume 13, Corrosion, Metals Park, Ohio, 1415 p. (1987).

[5] I. Akkus: The Aluminide Coating of Superalloys with Pack Cementation Method, Master of Science Thesis, Osmangazi University, 27 p. (1999).

[6] J.J. Petrovic: MoSi2-Based High Temperature Structural Silicides, MRS Bulletin, XVIII, 35-40. (1993).

[7] J.J. Petrovic, A.K. Vasudevan: Overview of High Temperature Structural Silicides, Material Research Society Symposum Proceedings, 322, 3-8. (1994).

[8] J.J. Petrovic: High Temperature Structural Silicides, Ceramic Engineering and Science Proceedings, 18, 3-17. (1997).

[9] D.J. Gren, R.H.J. Hannink, M.V. Swain: Transformation Toughening for Ceramics, CRC Pres Inc: Boca Raton. (1989).

[10] J.J. Petrovic, A.K. Vasudevan: Key Developments in High Temperature Structural Silicides, Mater. Sci. Eng., A261: 1. (1999).

[11] Y. Suzuki, T. Sekino, K. Niihara: Effects of ZrO2 Addition on Microstructure and Mechanical Properties of MoSi2, Scripta Metal Mater, 33: 69. (1995).


[12] D. Yi, C. Li: MoSi2-ZrO2 Composites-Fabrication, Microstructures and Properties, Mater. Sci. Eng., A261: 89. (1999).

[13] A.H. Bartlett, R.G. Castro, D.P. Butt, H. Kung, J.J. Petrovic, Z. Zurecki, 1996: Plasma Sprayed MoSi2-Al2O3, Industrial Heating, January. (1996).

[14] A.K. Bhattacharya, J.J. Petrovic: Hardness and Fracture Toughness of SiC-Particle Reinforced MoSi2 Composites, J. Am. Ceram. Soc., 74: 2700. (1991).

[15] D.P. Butt, D.A. Korzekwa, S.A. Maloy, H. Kung, J.J. Petrovic: Impression Creep Behaviour of SiC Particle-MoSi2 Composites, J. Mater. Res., 11: 1528. (1996).


[16] Y. Suzuki, K. Niihara: Effect of SiC Reinformcement on Microstructure and Mechanical Properties of MoSi2, Sci Eng. Compos. Mater., 6: 85. (1997).

[17] J.I. Lee, N.L. Hecht, T. Mah: In Situ Processing and Properties of SiC/MoSi2 Nanocomposites, J. Am. Ceram. Soc., 81: 421. (1998).

[18] F.D. Gac, J.J. Petrovic: Feasibility of a Composite of SiC Whiskers in an MoSi2 Matrix, J. Am. Ceram. Soc., 68: C200. (1985).

[19] W.S. Gibbs, JJ. Petrovic, R.E. Honnell: SiC Whisker-MoSi2 Matrix Composites, Ceram. Eng. Sci. Proc., 8: 645. (1987).

[20] J.J. Petrovic, R.E. Honnell: SiC Reinforced-MoSi2/WSi2 Alloy Matrix Composites, Ceram. Eng. Sci. Proc., 11: 734. (1990).


[21] J.J. Petrovic, R.E. Honnel, A.K. Vasudevan: SiC-Reinforced-MoSi2 Matrix Composites, Mater. Res. Soc. Symp. Proc., 194: 123. (1990).

[22] M.V. Nathal, M.G. Hebsur: Strong, Tough, and Pest-resistant MoSi2-Base Hybrid Composite for Structural Applications. In: M.V. Nathal, R. Darolia, C.T. Liu, P.T. Martin, D.B. Miracle, R. Wagner et al., editors. Structural Intermetallics. Warrendale (USA): TMS, p.949. (1997).

[23] J.J. Petrovic: Toughening Strategies for MoSi2-Based High Temperature Structural Silicides, Intermetallics, 8, 1175-1182p. (2000).


[24] M.G. Hebsur: Development and Characterization of SiC(f)/MoSi2-Si3N4(p) Hybrid Composites, Material Science and Engineering, A261, 24-37p. (1999).