Photochromic and Self-Cleaning Properties of TiO2-AgCl/Cu2+ Thin Films

Abstract:

Article Preview

TiO2-AgCl/Cu2+ thin films containing 0 to 1%Cu2+ coated on glass slides were prepared by sol gel-dip coating method. The prepared films were synthesized at the temperature range of 100-500 °C. The microstructure and properties of synthesized TiO2-AgCl/Cu2+ thin films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and UV-vis diffuse reflectance spectroscopy (DRS). Finally, the hydrophilic property was evaluated by means of contact angle of water droplet on the films. The results show that both calcinations temperature and Cu2+-doping have an effect on anatase and AgCl phase formation, crystallite sizes and phase content of the films. It was found that TiO2-AgCl/1%Cu2+ thin films calcined at 500 °C exhibit the highest photochromic (darken reaction) and self–cleaning effects (small contact angle) under UV irradiation.

Info:

Periodical:

Edited by:

Zeng Zhu

Pages:

149-155

DOI:

10.4028/www.scientific.net/AMR.214.149

Citation:

W. Sangchay et al., "Photochromic and Self-Cleaning Properties of TiO2-AgCl/Cu2+ Thin Films", Advanced Materials Research, Vol. 214, pp. 149-155, 2011

Online since:

February 2011

Export:

Price:

$35.00

[1] A. Elfanaoui, E. Elhamri, L. Boulkaddat, A. Ihlal, K. Bouabid, L. Laanab, A. Taled and X. Portier, Inter. J. hydrogen Energy, doi: 10. 1016/j. ijhydene. 2010. 07. 057.

DOI: 10.1016/j.ijhydene.2010.07.057

[2] C. Euvananont, C. Junin, K. Inpor, P. Limthongkul and C. Thanachayanont, Ceramics International Vol. 34 (2008), p.1067.

DOI: 10.1016/j.ceramint.2007.09.043

[3] G.D. Fernando, V.G. Katherine and M. M Claudia, Micro. J. Vol. 39 (2008), p.1333.

[4] M.J. Alam and D.C. Cameron, J. Sol-Gel Sci. and Tech. Vol. 25 (2002), p.137.

[5] M. Gartner, R. Scurtu, A. Ghita, M. Zaharescu, M. Moreanu, C. Trapalis, M. Kokkoris and G. Kordas, Thin Solid Films Vol. 455-456 (2004) p.417.

DOI: 10.1016/j.tsf.2004.01.030

[6] J.H. Wel, X.J. Zhao, J. Xiao, J. g. Gan, R.Z. Yuan and J. Shi, J. Wuhan University of Tech. Mater. Sci. Ed. Vol. Sept (2002), pp.1-3.

[7] X. Hou, X. Wu and A. Liu, Front. Chem. Chaina Vol. 4 (2006), p.402.

[8] K. Hirotsugu, T. Koichi, H. Noborn, A. Yoshifumi and D. Shigehito, J. Mater. Chem. Vol. 8 (1998), p. (2019).

[9] Z.L. He, Z.W. Yu, H.Y. Miao, G.Q. Tan and Y. Liu, Sci. Chaina Ser E-Tech. Sci. Vol. 52 (2009), p.137.

[10] D. Shigehito, A. Yoshifumi, O. Junko, Y. Hiroshi, K. Akihiko and M. Minoru, J. Mater. Chem. Vol. 7 (1997), p.1769.

[11] R.J. Nemanich, J.T. Glass, G. Lucovsky and R.E. Shoroder, J. Vac. Sci. Tech. Vol. A6 (1988), p.1783.

[12] V.N. Fuflyigin, A.R. Kaul and S.A. Pozigun, J. Dephysique IV Vol. 3 (1993), p.361.

[13] P. Yinggou and E.L. David, J. Applied Phy. Vol. 93 (2003), p.7957.

[14] W.T. Chee and M. Jianmin, Thin Solide Films Vol. 517 (2009), p.4921.

[15] H.H. Mohammad and T. Nasrin, Acta. Chem. Slov. Vol. 52 (2005), p.53.

[16] T. Aleksanda, D. Pavo and D.F. Nikola, Vacuum Vol. 80 (2005), p.108.

[17] I. Djerdj, A.M. Tonejc, M. Bijelic, V. Vranesa and A. Turkovic, Vacuum Vol. 80 (2005), p.371.

[18] S. Lianyong and L. Zuhong, J. Photochemistry and Photobiology A: Chem. Vol. 107 (1997), p.245.

[19] P.Z. Mao, Y.G. Ming, P.J. Yan and L.J. Guo, J. Mat. Sci. Leters Vol. 20 (2001), p.485.

[20] H. Tao and Y. Jiannian, Prog. in Mat. Sci. Vol. 51 (2006), p.810.

[21] C. Euvananont, C. Junin, K. Inpor, P. Limthongkul and C. Thanachayanont, Cer. Inter. Vol. 34 (2008), p.1067.

DOI: 10.1016/j.ceramint.2007.09.043

[22] S.W. Lam, W.Y. Gan, K. Chiang and R. Amal, J. Aus. Cer. Soc. Vol. 44 (2008), p.6.

[23] K.P. Jin and K. K Ho, Bull. Korean Chem. Soc. Vol. 23 (2002), p.745.

[24] W. Toshiya, J. Sol-Gel Sci. and Tech. Vol. 19 (2000), p.71.

[25] C.L. Young, P.H. Young, Y.L. Ha, K. Hoon, J.J. Young, H.K. Kyung, S.J. Hyum and S.H. Kug, J. Colloid and Inter. Sci. Vol. 267 (2003), p.127.

[26] V. Murvet, L.S. David and V.D. Tuan, Sensors and Act. Vol. 106 (2005), p.660.

[27] T. Hiroyuki and M. Takeshi, Thin Solid Films Vol. 392 (2001), p.355.

[28] A. Kriltz, M. Muller, R. Fachet and H. Burger, J. Mat. Sci. Vol. 32 (1997), p.169.

[29] M. Zayat, D. Einot and R. Reisfeld, J. Sol-Gel Sci. and Tech. Vol. 10 (1997), p.203.

[30] T. Hiroyuki and M. Takeshi, J. Sol-Gel Sci. and Tech. Vol. 19 (2000), p.681.

[31] T. I-Hsiang, C.S. Jeffery and Y.C. Hsin, J. Catalysis Vol. 221 (2004), p.432.

[32] K. Scott Weil, Y.K. Jin, S.H. John and T.D. Jens, Scripta Materialia Vol. 54 (2006), p.1071.

[33] E. Celik, Z. Gokcen, N.F. Ak Azem, M. Tanoglu and O.F. Emrullahoglu, Mat. Sci. and Eng. Vol. 132 (2006), p.258.

[34] M. Khatamian and M. Irani, J. Iran. Chem. Soc. Vol. 6 (2009), p.187.

[35] T. Hiroshi, S. Hiromitsu, G. Yasuhito and I. Junzo, Neclear Ins. and Methods in Phy. Res. Vol. 206 (2003).

In order to see related information, you need to Login.