A Planar Lightwave Circuit Based on Optical Add-Drop Multiplexer with 16 Tunable Wavelength Channels

Abstract:

Article Preview

An electrically controlled optical add-drop multiplexer (OADM) based on silicon on insulator is presented, which possesses 16 tunable add/drop wavelength channel of 100 GHz channel spacing. The OADM is integrated lateral p-i-n diodes with single-mode Mach-Zehnder interferometer filter, which transforms the change of refractive index induced by the plasma dispersion effect into a voltage controlled variation of add/drop wavelength. The 3dB bandwidth of add/drop wavelength is less than 0.8 nm when the etch depth, period, Bragg wavelength and length of Bragg grating are 500 nm, 223 nm, 1548.5 nm and 1000 mm, respectively. When the applied voltage is 1.059~1.2219V, the tunable add/drop wavelength of OADM is between 1547.7 and 1536.5nm. Also, the add/drop wavelength could be controlled precisely by changing the grating period, which can satisfy the requirement of other wavelength range.

Info:

Periodical:

Edited by:

Yuhang Yang, Xilong Qu, Yiping Luo and Aimin Yang

Pages:

661-665

DOI:

10.4028/www.scientific.net/AMR.216.661

Citation:

X. B. Xing and Y. L. Wang, "A Planar Lightwave Circuit Based on Optical Add-Drop Multiplexer with 16 Tunable Wavelength Channels", Advanced Materials Research, Vol. 216, pp. 661-665, 2011

Online since:

March 2011

Export:

Price:

$35.00

[1] S. Rotolo, A. Tanzi, A. Burnazzi, D. Dimola, L. Cibinetto, M. Lenzi, G. L. Bona, B. J. Offrein, F. Horst, R. Germann, H. W. M. Salemink, and P. H. Baechtold: Ligthwave Technol. Vol. 18 ( 2000), p.569.

DOI: 10.1109/50.838132

[2] T. Augustsson: IEEE Photon. Technol. Lett. Vol. 13 (2001), p.1011.

[3] S. Suzuki, A. Himeno and M. Ishii: Lightwave Technol. Vol. 16 (1998), p.650.

[4] C. Kostrzewa, R. Moosburger, G. Fischbeck, B. Schuppert and K. Petermann: IEEE Photon. Technol. Lett. Vol. 9 (1997), p.1487.

DOI: 10.1109/68.634717

[5] L. Eldada, R. Blomquist, M. Maxfield, D. Pant, G. Boudoughian, C. Poga and R. A. Norwood: IEEE Photon. Technol. Lett. Vol. 11 (1999), p.448.

DOI: 10.1109/68.752544

[6] S. Y. Kim, S. B. Lee, S. W. Kwon, S. S. Choi and J. Jeong: Electron. Lett. Vol. 34 (1998), p.104.

[7] D. D. Mola, M. Lenzi, A. Carrera, S. Rotolo, S. Brunazzi, and A. Tanzi: Optical communication, 24th European Conference, Vol. 1 (1998), p.123.

DOI: 10.1109/ecoc.1998.732465

[8] S. Tanaka, M. Horita, T. Yazaki, and Y. Matsushima: 11th International Conference on Indium Phosphide and related materials, Davos, Switzerland, 281-284 (1999).

[9] C. Cocorullo, M. Iodice, I. Rendina and P. M. Sarro: IEEE Photon. Technol. Lett. Vol. 7 (1995), p.363.

[10] G. Coppola, A. Irace, G. Breglio and A. Cutolo: Opt. A: Pure Appl. Opt. Vol. 3 (2001), p.346.

[11] R. A. Soref and B. R. Bennett: IEEE J. Quantum Electron. Vol. QE-23 (1987), p.123.

[12] A. Yariv: IEEE Journal of Quantum Electron. Vol. QE-9 (1973), p.919.

[13] R. A. Soref, J. Schmidtchen and K. petermann: IEEE J. Quantum. Electron. Vol. 27 (1991), p. (1971).

In order to see related information, you need to Login.