Modeling the Process-Induced Modifications of the Microstructure of Work Piece Surface Zones in Cutting Processes


Article Preview

Cutting processes lead to mechanical and thermal loading of tool and work piece. This loading entails a direct influence of the cutting process on the surface layers of the manufactured work pieces. As a result, residual stresses and modifications of the micro-structure like white layers can occur in surface-near zones of the work piece. This paper presents the development of a FE-simulation model to predict phase transformations due to cutting processes. Therefore a 2D-FE-cutting simulation including a dynamic re-meshing is combined with a simulation routine to describe phase transformations that was primarily developed to simulate laser hardening. This paper illustrates the implemented mechanisms to determine phase transformations considering short time austenization and shows first experimental results revealing the influence of process parameters on the surfaces microstructure.



Edited by:

J.C. Outeiro




V. Schulze et al., "Modeling the Process-Induced Modifications of the Microstructure of Work Piece Surface Zones in Cutting Processes", Advanced Materials Research, Vol. 223, pp. 371-380, 2011

Online since:

April 2011




[1] T. Mabrouki, J. -F. Rigal: A contribution to a qualitative understanding of thermo-mechanical effects during chip formation in hard turning, J. of Mat. Proc. Tech. 176 (2006), pp.214-221.


[2] L. Filice, F. Micari, S. Rizzuti, D. Umbrello: A critical analysis of the friction modeling in orthogonal machining, Int. J. of Machine Tools & Manufacture 47 (2007), pp.709-714.


[3] P. Arrazola, D. Ugante, X. Dominguez: A new approach for the friction identification during machining through the use of finite element modeling, International Journal of Machine Tools & Manufacture 48 (2008), pp.173-183.


[4] G. Vieregge: Zerspanung der Eisenwerkstoffe, Verlag Stahleisen M.B.H. / Düsseldorf (1970).

[5] I. Lazoglu, Y. Altintas: Prediction of tool and chip temperature in continuous and interrupted machining, Int. Journal of Machine Tools & Manufacture 42 (2002), pp.1011-1022.


[6] R. Pabst: Mathematische Modellierung der Wärmestromdichte zur Simulation des thermischen Bauteilverhaltens bei der Trockenbearbeitung, Dissertation, Universität Karlsruhe (TH) (2008).

[7] H. -J. Bargel, G. Schulze: Werkstoffkunde, Springer-Verlag Berlin Heidelberg, ISBN 3-540-26107-0 (2005).

[8] G.V. Kurdjomov, A.G. Khachaturyan: Nature of axial ratio anomalies of the martensite lattice and mechanism of diffusion less g à a transformation, Acta Metallurgica. 23 (1975), pp.1077-1088.


[9] Y.K. Chou, C.J. Evans: White layers and thermal modeling of hard turned surfaces, Int. Journal of Machine Tools and Manufacture, 39/12 (1999), pp.1863-1881.


[10] J. Barry, G. Byrne: TEM study on the surface white layer in two turned hardened steels, Materials Science and Engineering A, 325, Issues 1-2 (2002), pp.356-364.


[11] D. Umbrello, A.D. Jayal, S. Caruso, O.W. Dillon, I.S. Jawahir: Modeling of white and dark layer formation in hard machining of AISI 52100 bearing steel, Machining Sc. and Tech., 14/1 (2010), pp.128-147.


[12] K.O. Lee, J.M. Kim, M.H. Chin, S.S. Kang: A study on the mechanical properties for developing a computer simulation model for heat treatment process, Journal of Materials Processing Technology, 182/ 1-3 (2007), pp.65-72.

[13] T. Miokovic, V. Schulze, O. Vöhringer, D. Löhe: Influence of cyclic temperature changes on the microstructure of AISI 4140 after laser surface hardening, Acta Mat. 55/2 (2007), pp.589-599.


[14] T. Miokovic: Analyse des Umwandlungsverhaltens bei ein- und mehrfacher Kurzzeithärtung bzw. Laserstrahlhärtung des Stahls 42CrMo4, Dissertation, Universität Karlsruhe (TH) (2005).

[15] P.T. Rajeev, L. Jin, T.N. Farris, S. Chandrasekar: Modeling of quenching and tempering induced phase transformations in steels, J. of ASTM Int. 6 (5) (2009).


[16] S. Serajzadeh, H. Mirbagheri, A. Karimi Taheri: Modelling the temperature distribution and microstructural changes during hot rod rolling of a low carbon steel, Journal of Materials Processing Technology, Volumes 125-126 (2002), pp.89-96.


[17] J. Sölter: Ursachen und Wirkmechanismen der Entstehung von Verzug infolge spanender Bearbeitung, Dissertation, Universität Bremen (2009).

[18] J. -D. Oh: Modellierung und Simulation des mechanischen und thermischen Beanspruchungsverhaltens metallischer Werkstoffe bei der Spanbildung, Dissertation, Technische Universität Kaiserlautern (2004).

[19] F. Biesinger: Experimentelle und numerische Untersuchung zur Randschichtausbildung und Spanbildung beim Hochgeschwindigkeitsfräsen von Ck45, Dissertation, Universität Karlsruhe (TH) (2005).

[20] V. Schulze, H. Autenrieth, M. Deuchert, H. Weule: Investigation of surface near residual stress states after micro-cutting by finite element simulation, CIRP Annals - Manufacturing Technology, Volume 59, Issue 1 (2010), pp.117-120.


[21] A. Ramesh, S.N. Melkote: Modeling of white layer formation under thermally dominant conditions in orthogonal machining of hardened AISI 52100 steel, International Journal of Machine Tools and Manufacture, Vol. 48, Issues 3-4 (2008), pp.402-414.


[22] J. Shi, R.C. Liu: On predicting chip morphology and phase transformation in hard machining, Int. Journal of Advanced Manufacturing Technology, 27 , 7-8 (2005), pp.645-654.


[23] M.H. Miguelez, R. Zaera, A. Molinari, A. Munoz-Sanchez: The influence of cutting speed in the residual stresses induced by HSM in AISI 316L steel, CIRP Conference on Modeling of Machining Operations, 12 (2009), pp.631-637.

[24] B. Müller: Thermische Analyse des Zerspanens metallischer Werkstoffe bei hohen Schnittgeschwindigkeiten, Dissertation, Technische Universität Kaiserslautern (2004).

[25] J. Söhner: Beitrag zur Simulation zerspanungstechnologischer Vorgänge mit Hilfe der Finite-Element-Methode, Dissertation , Universität Karlsruhe (TH) (2003).

[26] T. Miokovic, V. Schulze, O. Vöhringer, D. Löhe: Prediction of phase transformations during laser surface hardening of AISI 4140 including the effects of inhomogeneous austenite formation, Mat. Sc. and Engineering A 435-436 (2006), pp.547-555.