Effects of the Cutting Tool Edge Radius on the Stability Lobes in Micro-Milling


Article Preview

This paper investigates the effects of the cutting tool edge radius on the cutting forces and stability lobes in micro-milling. The investigation is conducted based on recently developed models for prediction of micro-milling cutting forces and stability lobes. The developed models consider the nonlinearities of the micro-milling process, such as nonlinear cutting forces due to cutting velocity dependencies, edge radius effect and run-out presence. A number of finite element analyses (FEA) are performed to obtain the cutting forces in orthogonal cutting which are used for determining the micro-milling cutting forces. The chip morphology obtained for different tool edge radii using FEA is presented. It is observed that at large tool edge radii the influence of the ploughing effect become more significant factor on the chip morphology. The results related to micro-milling cutting forces and stability lobes show that by enlarging the tool edge radius the micro-milling cutting forces increase while the stability limits decrease.



Edited by:

J.C. Outeiro




S. Afazov et al., "Effects of the Cutting Tool Edge Radius on the Stability Lobes in Micro-Milling", Advanced Materials Research, Vol. 223, pp. 859-868, 2011

Online since:

April 2011




[1] O. Quigley, J. Monaghan and P. O´Reilly: Factors affecting the machinability of an Al/SiC metal-matrix composite, in: Journal of Materials Processing Technology, Vol. 43 (1994), pp.21-36.

DOI: https://doi.org/10.1016/0924-0136(94)90159-7

[2] P. Müller: Untersuchungen zum Bohren von Faserverbundwerkstoffen mit Aluminiummatrix, Dissertation, ISF Dortmund (1989).

[3] J.E.A. Caroline, H.Y. Feng and W.M. Lau: Machining of an aluminum/SiC composite using diamond inserts, in: Journal of Material Processing Tech. Vol. 102 (2000), pp.25-29.

DOI: https://doi.org/10.1016/s0924-0136(00)00425-8

[4] K. Weinert, D. Biermann and S. Bergmann: Machining of High Strength Light Weight Alloys for Engine Applications, in: Annals of the CIRP, Vol. 56/1 (2007), pp.105-108.

DOI: https://doi.org/10.1016/j.cirp.2007.05.027

[5] K. Weinertand W. König: A Consideration of Tool Wear Mechanism when Machining Metal Matrix Composites (MMC), in: Annals of the CIRP, Vol. 42/1 (1993), pp.95-98.

DOI: https://doi.org/10.1016/s0007-8506(07)62400-7

[6] D. Biermann and D. Meister: Spanende Bearbeitung von faser- und partikelverstärkten Leichtmetall-Verbundwerkstoffen, in: K. U. Kainer (Hrsg. ): Metallische Verbundwerkstoffe, Deutsche Gesellschaft der Metallkunde, (1994), pp.261-284.

[7] J. Monaghan and P. O'Reilly: The drilling of an Al/SiC metal-matrix composite, in: Journal of Materials Science, Vol. 33/1 (1992), pp.469-480.

[8] G. Tosun and M. Muratoglu: The drilling of Al/SiCp metal-matrix composites. Part I: microstructure, in: Composites Science and Technology, Vol. 64/7 (2003), pp.299-308.

DOI: https://doi.org/10.1016/s0266-3538(03)00290-2

[9] K. Weinert: CVD-Diamant-Dickschichten für die spanende Bearbeitung von Al-MMC am Beispiel konkreter Bauteile aus dem Automobilbau, in: B. Wielage, G. Leonhardt (Hrsg. ): Verbundwerkstoffe und Werkstoffverbunde, (2001), pp.158-163.

[10] M. Ramulu, P. N. Rao and H. Kao: Drilling of (Al2O3)p/6061 metal matrix composites, in: Journal of Materials Processing Technology, Vol. 124/3 (2002), pp.244-254.

DOI: https://doi.org/10.1016/s0924-0136(02)00176-0

[11] X. Ding, W. Y. H. Liew and X. D. Liu: Evaluation of machining performance of MMC with PCBN and PCD tools, in: wear, Vol. 259/1 (2005), pp.1225-1234.

DOI: https://doi.org/10.1016/j.wear.2005.02.094

[12] M. Kök: A Study on the Machinability of Al2O3 Particle Reinforced Aluminium Alloy Composite / Untersuchung zur mechanischen Bearbeitbarkeit von Al2O3- partikelverstärkten Aluminiummatrix-Verbundwerkstoffen, in: Praktische Metallographie, Vol. 46-11 (2009).

[13] A. Simoneau, E. Ng ans M.A. Elbestawi: Chip formation during microscale cutting of a medium carbon steel, in: International Journal of Machine Tools and Manufacture, Vol. 46-5 (2006), pp.467-481.

DOI: https://doi.org/10.1016/j.ijmachtools.2005.07.019

[14] L. Chuzhoy, R. E. DeVor, S. G. Kapoor and D. J. Bammann: Microstructure-level modeling of ductile iron machining, in: Transactions of the ASME, Vol. 124 (2002), p.162–169.

DOI: https://doi.org/10.1115/1.1455642

[15] L. Chuzhoy, R. E. DeVor, S. G. Kapoor, A. J. Beaudoin and D. J. Bammann: Machining simulation of ductile iron and its constituents - Part I: estimation of material model parameters and their validation, in: Journal of Manufacturing Science and Engineering, Vol. 125 (2003).

DOI: https://doi.org/10.1115/1.1557294

[16] M. Graf von der Schulenburg and E. Uhlmann: Tungsten-Copper-Composite Cutting Simulation based on Microscopic Images, in: Proceedings of the 11th CIRP Conference On Modeling Of Machining Operations, Gaithersburg, MD, U.S. A, (2008).

[17] M.P. Vogler, R.E. DeVor and S.G. Kapoor: Microstructure-level force prediction model for micro-milling of multi-phase materials, in: Trans. ASME J. Manuf. Sci. Eng., Vol. 125 (2003), p.202–209.

DOI: https://doi.org/10.1115/1.1556402

[18] A. Pramanik, L.C. Zhang and J.A. Arsecularatne: Prediction of cutting forces in machining of metal matrix composites, in: International Journal of Machine Tools and Manufacture, Vol. 46-14 (2006), pp.1795-1803.

DOI: https://doi.org/10.1016/j.ijmachtools.2005.11.012

[19] E. Uhlmann, M. Graf von der Schulenburg and F. Schoen: Realitätsnahe Zerspansimulation von Verbundwerkstoffen, in: wt Werkstattstechnik online, H. 1/2 (2010).

[20] G. Johnson and W. Cook: Fracture Characteristics Of Three Metals Subjected To Various Strains, Strain Rates, Temperatures And Pressures, in: Engineering Fracture Mechanics, Vol. 23 (1985), pp.31-48.

DOI: https://doi.org/10.1016/0013-7944(85)90052-9

[21] J. Fish, C. Oskay and R. Fan: AL 6061-T6 - Elastomer Impact Simulations, Scientific Computation Research Center, research report 11 (2005).