Prediction of Soil TN and TC at a Farm-Scale Using VIS-NIR Spectroscopy

Abstract:

Article Preview

Building cost-effective models is of academic and practical value for fast measurement of soil properties, especially at a farm-scale. The aim of this study is to build quantitative models for soil total nitrogen (TN) and total carbon (TC) using visible and near infrared (VIS-NIR) spectroscopy. Dried samples (n=122) collected from an experimental farm, at Silsoe, Bedfordshire, United Kingdom, were scanned from 350 to 2500 nm at 1-nm intervals. Samples were divided into a calibration set (75%) and an independent validation set (25%). A partial least squares regression (PLSR) with leave-one-out cross validation was carried out based on different spectral ranges. Result shows that the best predictions (R2>0.90 and RPD>3.3) are achieved for TN using the VIS range (400-700nm) and for TC using the VIS-NIR range (400-2500nm). It is concluded that VIS-NIR spectroscopy coupled with PLSR can be adopted for the prediction of soil TN and TC at a farm-scale.

Info:

Periodical:

Advanced Materials Research (Volumes 225-226)

Edited by:

Helen Zhang, Gang Shen and David Jin

Pages:

1258-1261

DOI:

10.4028/www.scientific.net/AMR.225-226.1258

Citation:

H. Q. Yang et al., "Prediction of Soil TN and TC at a Farm-Scale Using VIS-NIR Spectroscopy", Advanced Materials Research, Vols. 225-226, pp. 1258-1261, 2011

Online since:

April 2011

Export:

Price:

$38.00

[1] J.V. Sinfield, D. Fagerman, and O. Colic: Computers and Electronics in Agriculture Vol. 70 (2010), p.1.

[2] D. Brunet, B.G. Barthès, J.L. Chotte, and C. Feller: Geoderma Vol. 139 (2007), p.106.

[3] A.M. Mouazen, R. Karoui, J. De Baerdemaeker, and H. Ramon: Soil Science Society of America Journal Vol. 70 (2006), p.1295.

[4] D. Cozzolino, and A. Morón: Soil and Tillage Research Vol. 85 (2006), p.78.

[5] B.G. Barthès, D. Brunet, E. Hien, F. Enjalric, S. Conche, G.T. Freschet, R. d'Annunzio, and J. Toucet-Louri: Soil Biology and Biochemistry Vol. 40 (2008), p.1533.

DOI: 10.1016/j.soilbio.2007.12.023

[6] A.M. Mouazen, R. Karoui, J. Deckers, J. De Baerdemaeker, and H. Ramon: Biosystems Engineering Vol. 97 (2007), p.131.

[7] C. Guerrero, R. Zornoza, I. Gómez, and J. Mataix-Beneyto: Geoderma Vol. 158 (2010), p.66.

[8] H. Yang, B. Kuang, and A.M. Mouazen: Key Engineering Materials Journal Vol. 467-469 (2011), p.725.

[9] T. Terhoeven-Urselmans, H. Schmidt, R. Georg Joergensen, and B. Ludwig: Soil Biology and Biochemistry Vol. 40 (2008), p.1178.

[10] M. R. Maleki, A.M. Mouazen, H. Ramon, and J. De Baerdemaeker: Biosystems Engineering Vol. 96 (2007), p.427.

[11] H. Yang, B. Kuang, and A.M. Mouazen: Advanced Materials Research Vol. 181-182 (2011), p.416.

[12] A.M. Mouazen, B. Kuang, J. De Baerdemaeker, and H. Ramon: Geoderma Vol. 158 (2010), p.23.

[13] A.M. Mouazen, J.D. Baerdemaeker, and H. Ramon: Journal of Near Infrared Spectroscopy Vol. 14 (2006), p.189.

[14] K. Islam, B. Singh, and A.B. McBratney: Australian journal of soil research Vol. 41 (2003), p.1101.

[15] R.A. Viscarra Rossel, D.J.J. Walvoort, A.B. McBratney, L.J. Janik, and J.O. Skjemstad: Geoderma Vol. 131 (2006), p.59.

DOI: 10.1016/j.geoderma.2005.03.007

[16] R.A. Viscarra Rossel, B. Minasny, P. Roudier, and A.B. McBratney: Geoderma Vol. 133 (2006), p.320.

DOI: 10.1016/j.geoderma.2005.07.017

[17] R.A. Viscarra Rossel, Y. Fouad, and C. Walter: Biosystems Engineering Vol. 100 (2008), p.149.

[18] K.A. Sudduth, and J.W. Hummel: Transactions of the ASAE Vol. 36 (1993), p.1571.

In order to see related information, you need to Login.