Micro-Ploughing Process of Copper Current Collector for Lithium-Ion Battery

Abstract:

Article Preview

A three-dimensional “fin-groove” composite structure copper current collector was fabricated by micro-ploughing process. 3D and common 2D carbon anodes for lithium- ion batteries were prepared. The electrochemical properties of these electrodes were studied by linear sweep cyclic voltammetry (CV) and charge-discharge (C-D) test. 2D anode showed high contact resistance, high coulombic efficiency but poor cycle performance. In contrast, 3D anode showed the structure superiority in reinforcing bonding force between active materials and copper substrate, improving the conductive environment and alleviating volume changes. It was believed that 3D anode can keep high coulombic efficiency and improve the cycle performance of lithium- ion batteries.

Info:

Periodical:

Advanced Materials Research (Volumes 228-229)

Edited by:

Quanjie Gao

Pages:

309-314

Citation:

X. X. Tang et al., "Micro-Ploughing Process of Copper Current Collector for Lithium-Ion Battery", Advanced Materials Research, Vols. 228-229, pp. 309-314, 2011

Online since:

April 2011

Export:

Price:

$38.00

[1] Qin Si, K. Hanai, N. Imanishi, M. Kubo, A. Hirano, Y. Takeda and O. Yamamoto: J. Power Sources Vol. 189 (2009), p.761.

[2] A.M. Andersson, D.P. Abraham, R. Haasch, S. MacLaren, J. Liu and K. Amine: J. Electrochem. Soc. Vol. 149 (2002), p. A1358.

DOI: https://doi.org/10.1149/1.1505636

[3] X. Zhang, P.N. Ross, Jr., R. Kostecki, F. Kong, S. Sloop, J.B. Kerr, K. Striebel, E.J. Cairns and F. McLarnon: J. Electrochem. Soc. Vol. 148 (2001), p. A463.

DOI: https://doi.org/10.1149/1.1362541

[4] S.S. Zhang, K. Xu and T.R. Jow: Electrochim. Acta Vol. 48 (2002), p.241.

[5] Y.P. Wu, E. Rahm and R. Holze: J. Power Sources Vol. 114 (2003), p.228.

[6] Y.P. Wu, C. Jiang, C. Wan and R. Holze: Electrochem. Commu. Vol. 4 (2002), p.483.

[7] I. Isaev, G. Salitra, A. Soffer, Y.S. Cohen, D. Aurbach and J. Fiscber: J. Power Sources Vol. 119-121 (2003), p.28.

[8] Gabrielle Nadeau, Xiang Yun Song, Monique Masse, Abdelbast Guerfi, Gessie Brisard, Kimio Kinoshita and Karim Zaghib: J. Power Sources Vol. 108 (2002), p.86.

DOI: https://doi.org/10.1016/s0378-7753(02)00009-5

[9] K. Guo, Q. Pan, L. Wang and S. Fang: J. Appl. Electrochem Vol. 32 (2002), p.679.

[10] Qing Wang, Hong Li, Liquan Chen and Xuejie Huang: Solid State Ionics Vol. 152-153 (2002), p.43.

[11] R.A. Huggins: J. Power Sources Vol. 81-82 (1999), p.13.

[12] Chiaki Iwakura, Yukio Fukumoto, Hiroshi Inoue, Syunpei Ohashi, Satoshi Kobayashi, Hiroshi Tada and Masaaki Abe: J. Power Sources Vol. 68 (1997), p.301.

DOI: https://doi.org/10.1016/s0378-7753(97)02538-x

[13] Zhijia Du, Shichao Zhang, Tao Jiang and Zhiming Bai: Electrochim Acta Vol. 55 (2010), p.3537.

[14] Tao Jiang, Shichao Zhang, Xingping Qiu, Wentao Zhu and Liquan Chen: Electrochem. Commu. Vol. 9 (2007), p.930.

[15] Yong Tang, Yong Chi, Zhenping Wan, Xiaokang Liu, Jinchang Chen, Xuexiong Deng, Lin Liu: J. Materials Processing Technology Vol. 203 (2008), p.548.

DOI: https://doi.org/10.1049/cp:20060867

[16] Jane Yao, G.X. Wang, Jung-ho. Ahn, H.K. Liu and S.X. Dou: J. Power Sources Vol. 114 (2003), p.292.

[17] Yamaguhchi shoji: J. Tanso Vol. 186 (1999), p.39.

[18] Yair Ein-Eli, Boris Markovsky, Doron Aurbach, Yaakov Carmeli, Herzel Yamin and Shalom Luski: Electrochim Acta Vol. 39 (1994), p.2559.

DOI: https://doi.org/10.1016/0013-4686(94)00221-5

[19] Jae Hyun Lee, Hyang Mok Lee and Soonho Ahn: J. Power Sources Vol. 119-121 (2003), p.833.

DOI: https://doi.org/10.1016/s0378-7753(03)00281-7