Application of ANN and SVM for Uncertainty Quantification and Propagation

Abstract:

Article Preview

All measurements have error that obscures the true value. The error creates uncertainty about the quality of the measured value, which is requiring testing and calibration laboratories to provide estimates of uncertainty with their measurements. Measurement uncertainties include input uncertainty, the propagation of input uncertainty, the output uncertainty and the systematic error uncertainty. Several methods for estimating the uncertainty of measurements have been introduced for different kinds of uncertainty quantification, and two data mining methodologies-Artificial Neural Network (ANN) and Support Vector Machine (SVM) are used to build the unknown propagation model. This paper will discuss the quantification of measurement uncertainty (MU) and the separation of various uncertainty sources to MU and will discuss the advantages and limitations of SVM and ANN for building the propagation model of MU.

Info:

Periodical:

Advanced Materials Research (Volumes 230-232)

Edited by:

Ran Chen and Wenli Yao

Pages:

192-196

DOI:

10.4028/www.scientific.net/AMR.230-232.192

Citation:

Q. S. He et al., "Application of ANN and SVM for Uncertainty Quantification and Propagation", Advanced Materials Research, Vols. 230-232, pp. 192-196, 2011

Online since:

May 2011

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.