Corrosion Behavior of 10CrNiCu Steel Influenced by Thiobacillus Ferrooxidans


Article Preview

The microbial corrosion behaviors of 10CrNiCu steel influenced by Thiobcillus ferrooxidans (T.f) were studied by microbiological, electrochemical and surface analysis method. The open circuit potential (Eocp) and electrochemical impedance spectroscopy (EIS) of the 10CrNiCu electrodes were measured in immersion electrode way with and without T.f solution at the time of the 0, 2nd, 7th, 14th and 21st days, respectively. Eocp of the electrode immersed in sterile medium shifted to negative potential with the immersion time while that for immersion in T.f solutions shifted negatively, then positively and finally negatively. EIS results were interpreted with different equivalent circuits of the electrode/biofilm/solution interface. The result of SEM indicated that, after 21 immersion days, there were different sizes of pits on the 10CrNiCu surface occurred in T.f solution while no evidence of the pitting corrosion was observed on the steel surface immersed in the sterile medium.



Advanced Materials Research (Volumes 233-235)

Edited by:

Zhong Cao, Lixian Sun, Xueqiang Cao, Yinghe He






K. Soe et al., "Corrosion Behavior of 10CrNiCu Steel Influenced by Thiobacillus Ferrooxidans", Advanced Materials Research, Vols. 233-235, pp. 2633-2639, 2011

Online since:

May 2011




[1] Moselio Schaechter, Editor: The Desk Encyclopedia of Microbiology, 2nd Edition, (2009).

[2] T. Sugio, Y. Tsujita, T. Katagiri, K. Inagaki and T. Tano: Journal of Bacteriology, Vol. 170 (1998), p.5956.

[3] T.A. Wood, K.R. Murray and J.G. Burgess: Applied Microbiology and Biotechnology, Vol. 56 (2001), p.560.

[4] Zhiguo He, Hui Zhong, Yuehua Hu, Shengmu Xiao and Jin Xu: Journal of Microbiological Methods, Vol. 65 (2006), p.10.

[5] Jean LACombe Barron and Donald R. Lueking: Applied Environmental Microbiology, Vol. 56 (1990), p.2801.

[6] Anders B. Jensen and Colin Webb: Process Biochemistry, Vol. 30 (1995), p.225.

[7] E. Donati, G. Curutchet, C. Pogliani and E Tedesco: Process Biochemistry, Vol. 31 (1996), p.129.

[8] M. Nemati, S.T.L. Harrison, G.S. Hansford and C. Webb: Biochemical Engineering Journal, Vol. 1 (1998), p.171.

[9] J.A. Rojas-Chapana and H. Tributsch: Hydrometallurgy, Vol. 59 (2001), p.291.

[10] S. Malhotra, A.S. Tankhiwale, A.S. Rajvaidya and R.A. Pandey: Bioresource Technology, Vol. 85 (2002), p.225.

[11] R. Mathur, J. Ruiz, S. Titley, L. Liermann, H. Buss and S. Brantley: Geochimica et Cosmochimica Acta, Vol. 69 (2005), p.5233.

DOI: 10.1016/j.gca.2005.06.022

[12] L. Hongxu, Q. Guanzhou, H. Yuehua, C. Daqiang and W. Dianzuo: Trans. Nonferrous Met. Soc. China, Vol. 16 (2006), p.1240.

[13] Hongmei Li and Jiajun Ke: Hydrometallurgy, Vol. 61 (2001), p.151.

[14] Songmei Li, Yuanyuan Zhang, Jianhya Liu and Mei Yu: Acta Phys-Chim. Sin, Vol. 24 (2008), p.1553.

[15] Jianhua Liu, Xin liang and Songmei Li: J. Mater. Sci. Technol, Vol. 24 (2008), p.766.

[16] Songmei Li, Yuanyuan Zhang, Jianhya Liu and Mei Yu: International Journal of Modern Physics B, Vol. 24 (2010), p.3083.

[17] Xiaoxia Sheng, Yen-Peng Ting and Simo Olavi Pehkonen: Corrosion Science, Vol. 49 (2007), p.2159.

DOI: 10.1016/j.corsci.2006.10.040

[18] Leah R. Johnson: Journal of Theoretical Biology, Vol. 251 (2008), p.24.

[19] F. Crundwell: Mineral Engineering, Vol. 9 (1996), p.1081.

[20] Congmin Xu, Yaoheng Zhang, Guangxu Cheng and Wensheng Zhu: Materials Science and Engineering A, Vol. 443 (2007), p.235.

[21] S.J. Yuan and S.O. Pehkonen: Colloids and Surfaces B: Biointerfaces, Vol. 59 (2007), p.87.

[22] Li-Chong Xu, Kwong-Yu Chan and Herbert H.P. Fang: Materials Characterization, Vol. 48 (2002), p.195.

In order to see related information, you need to Login.