Effects of Metal Ion Dopants on Absorption Spectra and Photoreactivity of TiO2 Nanoparticles


Article Preview

This paper has systematically investigated the effects of 13 metal ion dopants on the photoreactivity and UV adsorption of TiO2 nanoparticle. The pure and ion-doped TiO2 nanoparticles were prepared using so-gel method. The absorption spectra of the TiO2 nanoparticles were obtained using UV-Visible spectrometer. The wavelength of the absorption edge of TiO2 was calculated using the tangent method. In general, different doping ion types were observed to exhibit different effects on the absorption spectra and photoreactivity of TiO2 nanoparticles. Ion concentrations were also shown to play a important role in the photoreactivity of the catalyst except Ag+, La3+, Zn2+ ions. Results reveal that red shift occurred to all ion-doped TiO2 nanoparticles with absorption edge ranging from 426 nm to 437 nm under optimal ion concentrations. Photocatalysis was shown to be inversely proportional to the amount of red shift of the absorption edge of implanted TiO2. Among the ions investigated, Ni-doped TiO2 nanoparticles have shown highest photoreactivity at the ion concentration 6.04×1017cm-3. The research results may provide references about enhancing the photoreactivity of TiO2 nanoparticles by applying metal ion doping.



Advanced Materials Research (Volumes 233-235)

Edited by:

Zhong Cao, Lixian Sun, Xueqiang Cao, Yinghe He




J. H. Chen et al., "Effects of Metal Ion Dopants on Absorption Spectra and Photoreactivity of TiO2 Nanoparticles", Advanced Materials Research, Vols. 233-235, pp. 2722-2731, 2011

Online since:

May 2011




[1] Masakazu Anpo, Catalysis Surveys from Japan. Vol. 1 (1997), p.169.

[2] M. Anpo: Pure Appl. Chem. Vol. 72 (2000), p.1787.

[3] C Wei, W.Y. Lin, Zulkarnain Zainalt Nathan E. Williams, Kat Zhu, Andrew P. Krurlc, Russell L. Smith, and Krishnan Rajeshwar: Environ. Sci. Technol. Vol. 28 (1994), p.934.

[4] C.Y. Lin and C. S. Li: Aerosol Sci. Technol. Vol. 37, 12 (2003), p.939.

[5] M.R. Hoffmann, S. T. Martin, W. Choi and D.W. Bahnemannt: Chem. Rev. Vol. 95 (1995), p.69.

[6] J. Ovenstone: J. Mater. Sci. Vol. 36(2001), p.1325.

[7] N. Serpone and D. Lawless: Langmuir, Vol. 10(1994), p.643.

[8] W. Choi, A. Termin and M. R. Hoffmann: J. Phys. Chem. Vol. 98 (1994), p.13669.

[9] S. Kim, S. Ju Hwang and W. Choi: J. Phys. Chem. B, Vol. 109(2005), p.24260.

[10] Y. Xie, P. Li and C. Yuan: J. Rare Earths (English Edition). Vol. 20(2002), p.619.

[11] J. Moon, H. Takagi, Y. Fujishiro and M. Awano: J. Mat. Sci. Vol. 36(2001), p.949.

[12] S. T. Martin, C. L. Morrison, and M.R. Hoffmann: J. Phys. Chem. Vol. 98(1994), p.13695.

[13] B. F. Xin, L.Q. Jing, Z.Y. Ren, B.Q. Wang, and H.G. Fu: Phys. Chem. B, Vol. 109 (2005), p.2805.

[14] L.C. Chen and T.C. Chou: Znd. Eng. Chem. Res. Vol. 33(1994), p.1436.

[15] H.M. Cheng, J.M. Ma, Z.G. Zhao, and L.M. Qi: Chem. Mater. Vol. 7 (1995), p.663.

[16] F.B. Li, X.Z. Li, C.H. Ao, S.C. Lee and M.F. Hou: Chemosphere Vol. 59(2005), p.787.