UV/Vis Absorption, Emission Spectra and Two-Photo Absorption Cross Sections of 4-Dihydroquinolinone Derivatives

Abstract:

Article Preview

A series of 4-dihydroquinolinone derivatives were fully optimized by density functional theory (DFT), Hartree-Fock (HF) and Configuration Interaction Singlet (CIS) approaches. Absorption spectra, emission spectra and two-photon absorption cross sections were calculated by using time-dependent density functional theory and few-state model. Calculations were performed in the presence of solvent by using Conductor polarizable continuum model (CPCM). The molecular geometries, absorption spectra, emission spectra were in good agreement well with those experiment values. The absorption and emission peak red-shifted as a result of the extension of the conjugated structures. The introduction of heteroatoms such as F, Cl and Br gave rise to intramolecular transfer and the blueshift of the absorption and the emission spectra. The introduction of O or S atoms in two sides of molecules propelled the redshift of the absorption and emission maximum.

Info:

Periodical:

Advanced Materials Research (Volumes 233-235)

Edited by:

Zhong Cao, Lixian Sun, Xueqiang Cao, Yinghe He

Pages:

2748-2754

DOI:

10.4028/www.scientific.net/AMR.233-235.2748

Citation:

Q. Qi et al., "UV/Vis Absorption, Emission Spectra and Two-Photo Absorption Cross Sections of 4-Dihydroquinolinone Derivatives", Advanced Materials Research, Vols. 233-235, pp. 2748-2754, 2011

Online since:

May 2011

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.