Fabrication and Optical Properties of Mn Doped ZnS Nanowires


Article Preview

Mn doped ZnS nanowires with typical wurtzite single-crystalline structure were successfully synthesized via H2 assistant chemical evaporation deposition method. The investigations indicated that the diameter of Mn/ZnS Nanowire with high aspect ratio is 25~40nm, EDS results show that the content of Mn element is about 4.45at%. HRTEM and SAED results demonstrated that the Mn/ZnS nanowires grow along [101] direction, which was different from the common direction reported in literatures. Room temperature photoluminescence properties were also examined, showing a strong green emission centered at 523.04 nm, and a weak emission at 382.53 nm was also observed, showing a red shift of 45.53 nm comparing to the intrinsic luminescence.



Advanced Materials Research (Volumes 236-238)

Edited by:

Zhong Cao, Yinghe He, Lixian Sun and Xueqiang Cao




J. J. Qi et al., "Fabrication and Optical Properties of Mn Doped ZnS Nanowires", Advanced Materials Research, Vols. 236-238, pp. 2211-2215, 2011

Online since:

May 2011




[1] E. Monroy, F. Omnes and F. Calle: Semicond. Sci. Technol. Vol. 18 (2003), p. R33.

[2] R. Menner, B. Dimmler and H.W. Schock: J. Crystal Growth Vol. 86 (1988), p.906.

[3] R.N. Bhargava, D. Gallagher and D. Nurminkko: Phys. Rev. Lett. Vol. 72 (1994), p.416.

[4] W. P ark, J.S. King, C.W. Neff, C. Liddell and C. Summers: Phys. Status Solidi Vol. b229 (2002), p.949.

[5] S. Velumani and J.A. Ascencio: Appl. Phys. A: Mater. Sci. Process Vol. 72 (2003), p.236.

[6] E. Monroy, F. Omnes, F. Calle: Semicond. Sci. Technol. Vol. 18 (2003), p. R33.

[7] R.N. Bhargava, D. Gallagher, X. Hong, D. Nurminkko: Phys. Rev. Lett. Vol. 72 (1994), p.416.

[8] W. Chen, R. Sammynaiken, Y. Huang, J.O. Malm, R. Wallenberg, J.O. Bovin, V. Zwiller and N.A. Kotov: J. Appl. Phys. Vol. 89 (2001), p.1120.

[9] A.D. Dinsmore, D.S. Hsu, S.B. Qadri, J.O. Cross, T.A. Kennedy, H.F. Gray and B.R. Ratna: J. Appl. Phys. Vol. 88 (2000), p.4985.

[10] C.J. Barrelet, Y. Wu, D.C. Bell and C.M. Lieber: J. Am. Chem. Soc. Vol. 125 (2003), p.11498.

[11] Y.W. Wang, L.D. Zhang, C.H. Liang, G.Z. Wang and X.S. Peng: Chem. Phys. Lett. Vol. 357 (2002), p.314.

[12] Y. Jiang, X.M. Meng, J. Liu, Z.R. Hong and S.T. Lee: Adv. Mater. Vol. 15 (2003), p.1195.

[13] X.H. Zhang, Y. Zhang, Y.P. Song, Z. Wang and D.P. Yu: Physica E Vol. 28 (2005), p.1.

[14] J.P. Ge, J. Wang and H.X. Zhang: Adv. Funct. Mater. Vol. 15 (2005), p.303~308.

[15] J.F. Gong, S.G. Yang, J. Duan and Y.W. Du: Chem. Commun. Vol. 22 (2005), p.251.

[16] J.Q. Hu, Y. Bando, J.H. Zhan and D. Golberg: Adv. Funct. Mater. Vol. 15 (2005), p.757.

[17] C.H. Liang, Y. Shimizu, T. Sasaki, H. Umehara and N. Koshizaki: J. Phys. Chem. B Vol. 108 (2004), p.9728.

[18] Y.C. Zhu, Y. Bando, D.F. Xue and D. Golberg: Adv. Mater. Vol. 16 (2004), p.831.

[19] X.T. Zhang, Z. Liu, C.C. Wong and S.K. Hark: Solid State Commun. Vol. 139 (2006), p.387.

[20] J.J. Qi, Y. Zhang, Y.H. Huang and Q.L. Liao: Appl. Phys. Lett. Vol. 89 (2006), p.252115.

[21] H.J. Yuan, X.Q. Yan and Z.X. Zhang: J. Crys. Growth Vol. 271 (2004), p.403~408.

[22] Q. Xiong, G. Chen, J.D. Acord, X. Liu, J.J. Zengel, H.R. Gutierrez, J.M. Redwing, L.C. Lew, Y. Voon, B. Lassen and P. C. Eklund: Nano Lett. Vol. 4 (2004), p.1663.

DOI: https://doi.org/10.1021/nl049169r

[23] M. Wang, L. Sun, X. Fu, C. Liao and C. Yan: Solid State Common. Vol. 115 (2000), p.493.

[24] A.A. Bol and A. Meijerink: J. Phys. Chem. B Vol. 105 (2001), p.10197.

[25] J.F. Suyver, S.F. Wuister, J.J. Kelly and A. Meijerink: Nano Lett. Vol. 1 (2001), p.429.

[26] J.C. Lee and D.H. Park: Mater. Lett. Vol. 57 (2003), p.2872.

[27] H. Weller: Angew. Chem. Int. Ed. Vol. 32 (1993), p.41.

[28] Y.C. Li, X.H. Li, C.H. Yang and Y.F. Li: J. Phys. Chem. B Vol. 108 (2004), p.16002.

[29] W. Liu, R. Wang and N. Wang: Appl. Phys. Lett. Vol. 97 (2010), p.041916.

Fetching data from Crossref.
This may take some time to load.