A Stretched Carbon Nanotube with a High-Density of Topological Defect


Article Preview

We have developed a theoretical method to obtain a single-walled carbon nanotube (SWCNT) with a high density of topological defects. Carbon nanotubes (CNTs) sustain elastic elongation up to 15-30% at low temperature because of the sufficiently high barrier of bond rotations. A large number of topological defects are activated simultaneously and widely distributed over the entire tube wall after heating the stretched tube to an elevated temperature. This is driven by the internal energy of the strained carbon nanotubes. The manner in which topological defects are distributed is affected by the initial strain and the heating temperature. Nanotubes with a large number of topological defects achieve the elongation without breaking.



Advanced Materials Research (Volumes 236-238)

Edited by:

Zhong Cao, Yinghe He, Lixian Sun and Xueqiang Cao




F. Y. Meng et al., "A Stretched Carbon Nanotube with a High-Density of Topological Defect", Advanced Materials Research, Vols. 236-238, pp. 2225-2228, 2011

Online since:

May 2011




[1] Q. Z. Zhao, M. B. Nardelli and J. Bernholc: Phys. Rev. B Vol. 65 (2002), p.144105.

[2] S. Iijima, C. Brabec, A. Maiti, and J. Bernholc: J. Chem. Phys. Vol. 104 (1996), p. (2089).

[3] S. Ogata S and Y. Shibutani: Phys. Rev. B Vol. 68 (2003), p.165409.

[4] D. Srivastava, D. W. Brenner, J. D. Schall, K. D. Ausman, M. F. Yu and R. S. Ruoff: J. Phys. Chem. B Vol. 103 (1999), p.4330.

[5] M. B. Nardelli, B. I. Yakobson and J. Bernholc: Phys. Rev. Lett. Vol. 81 (1998), p.4656.

[6] L. G. Zhou and S. Q. Shi: Carbon Vol. 41 (2003), p.613.

[7] F. Y. Meng, L. G. Zhou, S. Q. Shi and R. Yang: Carbon Vol. 41 (2003), p. (2023).

[8] B. I. Yakobson: Appl. Phys. Lett. Vol. 72 (1998), p.918.

[9] T. Dumitrica, M. Hua and B. I. Yakobson: PNAS Vol. 103 (2006), p.6105.

[10] H. Mori, S. Ogata, J. Li, S. Akita and Y. Nakayama: Phys. Rev. B Vol. 76 (2007), p.165405.

[11] P. L. Zhang, P. E. Lammert and V. H. Crespi: Phys. Rev. Lett. Vol. 81 (1998), p.5346.

[12] L. G. Zhou and S. Q. Shi: Appl. Phys. Lett. Vol. 83 (2003), p.1222.

[13] J. Y. Huang, S. Chen, A. Q. Wang, K. Kempa, Y. M. Wang, S. H. Jo, G. Chen, M. S. Dresselhaus and Z. F. Ren: Nature Vol. 439 (2006), p.439.

DOI: https://doi.org/10.1038/439281a

[14] J. Y. Huang, S. Chen, Z. F. Ren, Z. Q. Wang, D. Z. Wang, M. Vaziri, Z. Suo, G. Chen and M. S. Resselhaus: Phys. Rev. Lett. Vol. 97 (2006), p.075501.

[15] F. Ding, K. Jiao, Y. Lin and B. I. Yakobson: Nano Lett. Vol. 7 (2007), p.681.

[16] J. Y. Huang, F. Ding and B. I. Yakobson: Phys. Rev. Lett. Vol. 100 (2008), p.035503.

[17] C. Y. Wei, K. Cho and D. Srivastava: Phys. Rev. B Vol. 67 (2003), p.115407.

[18] D. W. Brenner, O. A. Shenderova, J. A. Harrison, B. S. J. Stuart, B. Ni and S. B. Sinnot: J. Phys.: Condens. Matter. Vol. 14 (2002), p.783.

[19] T. Zhu, J. Li, A. Samanta, A. Leach and K. Gall: Phys. Rev. Lett. Vol. 100 (2008), p.025502.

[20] T. Zhu, J. Li, Ogata and S. Yip: MRS Bulletin Vol. 34 (2009), 167.

[21] F. Y. Meng, S. Ogata, D. S. Xu, Y. Shibutani and S. Q. Shi: Phys. Rev. B Vol. 75 (2007), p.205403.

Fetching data from Crossref.
This may take some time to load.