Young's Modulus of Graphene Based on Finite Displacement Theory

Abstract:

Article Preview

Young’s modulus of monolayer graphene with carbon-circles is considered based on least-energy principle (LEP) and finite displacement theory (FDT). The relationships between the Young’s modulus and the numbers of carbon-circles of graphene are obtained. The results suggest that the Young’s modulus of graphene increases with the increasing number of carbon-circles in y-direction, but reduces with the increasing number in x-direction, and gradually comes to the constant .

Info:

Periodical:

Advanced Materials Research (Volumes 236-238)

Edited by:

Zhong Cao, Yinghe He, Lixian Sun and Xueqiang Cao

Pages:

3051-3055

DOI:

10.4028/www.scientific.net/AMR.236-238.3051

Citation:

S. H. Ban et al., "Young's Modulus of Graphene Based on Finite Displacement Theory", Advanced Materials Research, Vols. 236-238, pp. 3051-3055, 2011

Online since:

May 2011

Export:

Price:

$35.00

[1] A. Krishnan, E. Dujardin, T. W. Ebbesen, P. N. Yianilos and M.M.J. Treacy, Phys. Rev. B 58 (1998), 20: pp.14013-14019.

DOI: 10.1103/physrevb.58.14013

[2] X. Zhou, J. Zhou and Z. Ou-Yang, Phys. Rev. B 62(2000), 20: pp.13692-13696.

[3] G. V. Lier, C. V. Alsenoy, V. V. Doren and P. Geerlings, Chem. Phys. Lett. 326(2000): pp.181-185.

[4] O. Shenderova, D. Brenner and R. S. Ruoff, Nano Lett. 3(2003), 6: pp.805-809.

[5] W. Bao, C. Zhu and W. Cui, Physica B352 (2004): pp.156-163.

[6] M. Meo and M. Rossi, Compos. Sci. Technol. 66 (2006): pp.1597-1605.

[7] Y. Huang, J. Wu and K. C. Hwang, Phys. Rev. B74 (2006): pp.5413-5420.

[8] Y. Li, C. Park, Y. Son, M. L. Cohen and S. G. Louie, Phys. Rev. Lett. 99 (2007): pp.6801-6804.

[9] C. Lee, X. Wei, J. W. kysar and J. Hone, Science321(2008), 5887: pp.385-388.

[10] S. Wang, Y. Zhang, N. Abidi and L. Cabrales, Langmuir25(2009), 25: p.11078–11081.

[11] A. K. Geim, Science324(2009), 5934: pp.1530-1534.

In order to see related information, you need to Login.