The Effect of Support on the Electrochemical Performance of Composite Electrode Materials for Supercapacit

Abstract:

Article Preview

Composite electrode materials for supercapacitor were prepared by a combination of incipient wetness impregnation and hydrothermal method in this study. The materials were characterized by XRD, specific surface area and electrochemical testing. The effect of support on the electrochemical performance of the composite electrode materials was investigated. The result shows that the samples prepared by different supports contain nickel nitrate hydroxide hydrate (the electroactive material in the composite) and undecomposed nickel nitrate.The specific surface area decrease after the loading of nickel compounds, which indicates the exisitance of nickel compounds in the pores. The composite prepared by using diatomite support exhibits higher specific capacitance than those prepared by using SBA-15 and Ti-Si molecular sieve, which delivers the specific capacitance of 1162.77 F/g at the scan rate of 5 mV/s.

Info:

Periodical:

Advanced Materials Research (Volumes 239-242)

Edited by:

Zhong Cao, Xueqiang Cao, Lixian Sun, Yinghe He

Pages:

1010-1013

DOI:

10.4028/www.scientific.net/AMR.239-242.1010

Citation:

Y. H. Sun et al., "The Effect of Support on the Electrochemical Performance of Composite Electrode Materials for Supercapacit", Advanced Materials Research, Vols. 239-242, pp. 1010-1013, 2011

Online since:

May 2011

Export:

Price:

$35.00

[1] J.N. Broughton and M.J. Brett: Electrochim. Acta Vol. 49 (2004), p.4439.

[2] M. Toupin, D. Belanger, I.R. Hill and D. Quinn: J. Power Sources Vol. 140 (2005), p.203.

[3] Y.W. Zhu, S. Murali, M.D. Stoller, A. Velamakanni, R.D. Piner and R.S. Ruoff: Carbon Vol. 48 (2010), p.2118.

[4] Y.P. Fang, J.W. Liu, D.J. Yu, J.P. Wicksted, K. Kalkan, C.O. Topal, B.N. Flanders, J. Wu, and J. Li: J. Power Sources Vol. 195(2010), p.674.

[5] M.E. Roberts, D.R. Wheeler, B.B. McKenzie, and B.C. Bunker: J. Mater. Chem Vol. 19 (2009), p.6977.

[6] K. Zhang, L.L. Zhang, X.S. Zhao, and J.S. Wu: Chem. Mater Vol. 22(2010), p.1392.

[7] C.Z. Yuan, X.G. Zhang, L.H. Su, B. Gao, and L.F. Shen: J. Mater. Chem Vol. 19(2009), p.5772.

[8] K.W. Nam, K.H. Kim, E.S. Lee, W.S. Yoon, X.Q. Yang, and K.B. Kim: J. Power Sources Vol. 182(2008), p.642.

[9] Y.H. Wang, I. Zhitomirsky: Langmuir Vol. 25(2009), p.9684.

[10] J.M. Ko, K.M. Kim: Mater. Chem. Phys Vol. 114(2009), p.837.

[11] R.R. Bi, X.L. Wu, F.F. Cao, L.Y. Jiang, Y.G. Guo, and L.J. Wan: J. Phys. Chem. C Vol. 114(2010), p.2448.

[12] J.P. Zheng, P.J. Cygan, and T.R. Jow: J. Electrochem. Soc Vol. 142(1995), p.2699.

[13] V. Srinivasan, J.W. Weidner: J. Electrochem. Soc Vol. 144(1997), p. L210.

[14] D.C. Wang, W.B. Ni, H. Pang, Q.Y. Lu, Z.J. Huang, and J.W. Zhao: Electrochim. Acta Vol. 55(2010), p.6830.

[15] S.L. Xiong, C.Z. Yuan, X.G. Zhang, B.J. Xi, and Y.T. Qian: Chem. Eur. J Vol. 15(2009), p.5320.

[16] Q.T. Qu, P. Zhang, B. Wang, Y.H. Chen, S. Tian, and Y.P. Wu, R. Holze: J. Phys. Chem. C Vol. 113(2009), p.14020.

[17] Q.T. Qu, L.L. Li, W.L. Guo, Y.P. Wu, H.P. Zhang, S.Y. Guan, and R. Holze: Chem. Commun Vol. 11(2009), p.1325.

[18] L. Cao, L.B. Kong Y.Y. Liang, and H.L. Li: Chem. Commun (2004), p.1646.

[19] D.Y. Zhao, J.L. Feng, Q.S. Huo, N. Melosh G.H. Fredrickson, B.F. Chmelka, and G.D. Stucky: Science Vol. 279(1998), p.548.

[20] V. Panic, T. Vidakovic, S. Gojkovic, A. Dekanski, S. Milonji, and B. Nikolic: Electrochim. Acta Vol. 48(2003), p.3805.

[21] J. Li, X. Y. Wang, Q.H. Huang, S. Gamboa, and P.J. Sebastian: J. Power Sources Vol. 160 (2006), p.1501.

[22] J.H. Park, O. Ok. Park, K.H. Shin, C. S. Jin, and J. H. Kim: Electrochem. Solid State Lett Vol. 5 (2002), p. H7.

In order to see related information, you need to Login.