Formation of the Surface Oxide Film on as-Cast Mg-7Li Alloy


Article Preview

The excellent properties of Mg-Li alloys make them suitable light fabrication materials used extensively in many applications. The microstructure and the surface oxide film at different temperature of as-cast Mg-7Li alloy were investigated by optical microscope(OM), scanning electron microscopy(SEM), X-ray diffraction(XRD) and electronic analytical balance. Results showed that Mg-7Li alloy was composed of mainly α phase and β phase. With increasing temperature, the morphology of the alloy surface varied from the formation of a very thin oxide film, large amounts of oxide particles to the thick and coarse film with a mass of cellular protuberances in size of 40-80μm. The ratio of oxidation weight gains rose from 0.08% to 11.58%. The surface oxide film consisted of mainly magnesium oxide(MgO) phase and lithium peroxide(Li2O2) phase, resulting from the reaction of oxygen with Mg and Li. The volume of the oxides on β phase greater than that on α phase led to the formation of cellular protuberance on the surface of Mg-7Li alloy at high temperature.



Advanced Materials Research (Volumes 239-242)

Edited by:

Zhong Cao, Xueqiang Cao, Lixian Sun, Yinghe He




J. G. Li et al., "Formation of the Surface Oxide Film on as-Cast Mg-7Li Alloy", Advanced Materials Research, Vols. 239-242, pp. 1082-1087, 2011

Online since:

May 2011




[1] H. Haferkamp, R. Boehm, U. Holzkamp, C. Jaschik, V. Kaese and M. Niemeyer: Materials Transactions Vol. 42(2001), pp.1160-1171.


[2] T. C. Chang, J. Y. Wang, C. L. Chu and S. Lee: Materials Letters Vol. 60(2006), pp.3272-3276.

[3] He Xu, Jing'an Liu, Shuisheng Xie, in: Magnesium alloy fabrication and processing technology (China Metallurgical industry press, Beijing, 2007) (In Chinese).

[4] Wanqiu Zhou, Dayong Shan, Rongchan Zeng, Enhou Han and Wei Ke: Materials Protection(In Chinese) Vol. 35(2002), pp.1-3.

[5] Yu Fan, Guohua Wu, Chunquan Zhai: Materials Science and Engineering A Vol. 433 (2006), pp.208-215.

[6] M. Santamaria, F. Di Quarto, S. Zanna and P. Marcus: Electrochimica Acta Vol. 53(2007), pp.1314-1324.

[7] Jianfeng Fan, Gencang Yang, Yao-he Zhou, Jun Xu, Zhi-feng Zhang and Lika Shi: Foundry Technology (In Chinese) Vol. 27(2006), pp.605-608.

[8] Yingwei Song, Dayong Shan, Rongshi Chen and Enhou Han: Journal of Alloys and Compounds Vol. 484(2009), pp.585-590.


[9] W. E. Freeth, G. V. Raynor: Inst. Metals Vol. 82(1953-1954), pp.575-580.

[10] W. Gasior, Z. Moser, W. Zakulski and G. Schwitzgebel: Metallurgical and Materials Transactions A Vol. 27(1996), pp.2419-2428.


[11] Y. J. Liang, Y. C. Che, in: Thermodynamic Data Notebook of Inorganics( Northeast University Press, Shenyang, 1993) (In Chinese).

[12] N. S. Mcintyre, C. Chen: Corrosion Science Vol. 40(1998), pp.1697-1709.

[13] Geneviève Baril, Nadine Pébère: Corrosion Science Vol. 43(2001), pp.471-484.

[14] A. T. Fromhold, in: Theory of metal oxidation (Amsterdam: North- Holland, 1976).

[15] C. Wagner, in: Diffusion and High Temperature Oxidation of Metals in Atom Movements (Am. Soc. Metals, Cleveland, 1951).

[16] M. Kurth, P. C. J Graat , E. J. Mittemeijer: Thin Solid Films Vol. 500 (2006), pp.61-69.

[17] J. Medved, P. Mrvar, M. Voncina: Oxid. Met. Vol. 71 (2009), pp.257-270.

[18] M. D. Lópeza, C. J. Múnez, M. Carboneras, P. Rodrigo, M.D. Escalera and E. Otero: Journal of Alloys and Compounds Vol. 491 (2010), pp.131-136.