CsH2PO4: Electrolyte for Intermediate Temperature Fuel Cells

Abstract:

Article Preview

This review paper discusses the temperature behavior and thermal event of cesium dihydrogen phosphate (CsH2PO4) in both ambient and high pressure atmosphere. A complete transition from the room-temperature to a high-temperature of CsH2PO4 (monoclinic to cubic phase) occurs between 230 to 240 °C, even in the absence of humid conditions and the superprotonic transition precedes the onset of the dehydration/chemical decomposition of the title compound. Decomposition or dehydration can be avoided by either keeping the sample under a H2O-saturated atmosphere, or subjecting the sample to a pressure of 1.0 ± 0.2 GPa.

Info:

Periodical:

Advanced Materials Research (Volumes 239-242)

Edited by:

Zhong Cao, Xueqiang Cao, Lixian Sun, Yinghe He

Pages:

2492-2498

Citation:

H. C. Teo et al., "CsH2PO4: Electrolyte for Intermediate Temperature Fuel Cells", Advanced Materials Research, Vols. 239-242, pp. 2492-2498, 2011

Online since:

May 2011

Export:

Price:

$38.00

[1] T. Norby: Nature Vol. 410 (2001), p.877.

[2] D.A. Boysen, T. Uda , C.R. I . Chisholm and S.M. Haile: Science Vol. 303 (2004), p.68.

[3] A.I. Baranov, V.V. Grebenev, A.N. Khodan, V.V. Dolbinina and E.P. Efremova: Solid State Ionics Vol. 176 (2005) p.2871.

DOI: https://doi.org/10.1016/j.ssi.2005.09.018

[4] J. Otomo, N. Minagawa, C. Wen, K. Eguchi and H. Takahashi: Solid State Ionics Vol. 156 (2003), p.357.

[5] T. Uda and S.M. Haile: Electrochem. Solid State Lett. Vol 8 (2005), p. A245.

[6] A. Levstik, R. Blinc, P. Kadaba, S. Cizikov, C. Levstik and C. Filipic: Solid State Commun. Vol. 16 (1975), p.1339.

DOI: https://doi.org/10.1016/0038-1098(75)90841-8

[7] Y. Uesu, and J. Kobayashi: J. Phys. Status Solidi A Vol. 34 (1976), p.475.

[8] S.M. Haile: Mater. Today. Vol. 18 (2003), p.24.

[9] W. Bronowska: J Chem. Phys. Vol. 114 (2001), p.611.

[10] D.A. Boysen, S.M. Haile, H. Liu and R.A. Secco: Chem. Mater. Vol. 15 (2003), p.727.

[11] E. Ortiz, R.A. Vargas and B.E. Mellander: J. Chem. Phys Vol. 110 (1999), p.4847.

[12] W. Bronowska and A. Pietraszko: Solid State Commun. Vol 76 (1990), p.293.

[13] Y. Luspin, Y. Vaills and G. Hauret: J. Phys. Vol. I (1997), p.785.

[14] B. Baranowski, M. Friesel and A.Z. Lunde´n: Naturforsch Vol 41a (1986), p.981.

[15] L.H. Rashkovich, K.B. Meteva, Ya.E. Shevchik, V.G. Hoffman and A.V. Mishchenko: Sov. Phy. Crystallogr. Vol. 22 (1977), p.613.

[16] B.M. Nirsha, E.N. Gudinitsa, A.A. Fakeev, V.A. Efremov, B.V. Zhadanov and V.A. Olikova: Russ. J. Inorg. Chem. Vol 27 (1985), p.770.

[17] L.N. Rashkovich and K.B. Meteva: Sov. Phys. Crystallogr. Vol 23 (1978), p.447.

[18] B. Metcalfe and J.B. Clark: Thermochim. Acta Vol. 24 (1978), p.149.

[19] A.I. Baranov, V.P. Khiznichenko, V.A. Sandler and L.A. Shuvalov: Ferroelectrics Vol. 100 (1989), p.135.

[20] A. Preisinger, K. Mereiter and W. Bronowska: Mater. Sci. Forum Vol. 166-169, (1994), p.511.

[21] C.E. Botez, J.D. Hermosillo, J Zhang, Y. Zhao, J. Majzlan, R. R Chianelli, C. Pantea: J. Chem. Phys. Vol. 127 (2007), p.194701.

[22] V.G. Ponomareva, E.S. Shutova, G.V. Lavrova: Inorg. Mater. Vol. 44 (2008), p.1009.