Carbon Microspheres Prepared by High Internal Phase Emulsion Polymerization


Article Preview

In this paper, we present a novel approach for the synthesis of carbon microspheres via the polymerization of a high internal phase emulsion (HIPE). By using Span 80 and Tween 80 as emulsifiers, 1iquid paraffin as oil phase, and the mixture of resorcinol/formaldehyde (R/F) solution as aqueous phase, an O/W emulsion was obtained. This emulsion phase inverted to a W/O HIPE induced by ammonia which served as the polymerization catalyst. Carbon microspheres (CMs) were prepared by polymerization of the HIPE, followed by drying and carbonization. Scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Brunauer-Emmett-Teller (BET) analyzer were used to characterize as-prepared CMs. The results indicate that, in case of 0.25 wt% ammonia of the HIPE, the diameters of CMs decreased from about 2 to 1 μm when the mass fraction of aqueous R/F decreased from 0.714 to 0.357; the apparent density and the specific surface areas of the CMs, however, did not change obviously, which are about 0.6 g/cm3 and 200 m2/g, respectively. The dosage of ammonia has a significant influence on the morphology and properties of CMs. With increasing of the ammonia mass to 1 wt% of the HIPE, the resultant carbon materials comprise not only CMs, but also some carbon sheets; the apparent density of which increased to 0.9 g/cm3 and the specific surface areas of which decreased to below 100 m2/g. In addition, the other parameters for CMs preparation were also investigated. It was found that the proper conditions were controlling the temperature of 303-333 K and the oil/aqueous phase mass ratio of 2.5:7.



Advanced Materials Research (Volumes 239-242)

Edited by:

Zhong Cao, Xueqiang Cao, Lixian Sun, Yinghe He






M. X. Liu et al., "Carbon Microspheres Prepared by High Internal Phase Emulsion Polymerization", Advanced Materials Research, Vols. 239-242, pp. 3105-3108, 2011

Online since:

May 2011




In order to see related information, you need to Login.

In order to see related information, you need to Login.