The Influence of Aluminum on the Electrochemical Performance of Zinc Alloy Anode

Abstract:

Article Preview

The electrochemical behaviors of zinc electrode containing Bi, In and Al were tested to study aluminum acting on the electrochemical performance of zinc anode using anodic polarization and tafel profiles measurement. The element distributions of IBA alloy were observed by scanning electron microscope (SEM). Our recent investigations demonstrate that the electrochemical activity of zinc alloy could be improved largely through integrating the optimization content of aluminum into zinc alloy. The SEM images show that there are obvious differences in the element distributions of surface, subsurface or bulk phase, especially, the segregation of Al in subsurface or bulk. The electrochemical behaviors of IBA alloy are related to its physical properties.

Info:

Periodical:

Advanced Materials Research (Volumes 239-242)

Edited by:

Zhong Cao, Xueqiang Cao, Lixian Sun, Yinghe He

Pages:

590-594

DOI:

10.4028/www.scientific.net/AMR.239-242.590

Citation:

L. Z. Wang et al., "The Influence of Aluminum on the Electrochemical Performance of Zinc Alloy Anode", Advanced Materials Research, Vols. 239-242, pp. 590-594, 2011

Online since:

May 2011

Export:

Price:

$38.00

[1] X.G. Zhang: J. Power Sources Vol. 163 (2006), pp.591-597.

[2] J.Y. Huot and M. Malservisi: J. Power Sources Vol. 96 (2001), pp.133-139.

[3] C.C. Yang and S.J. Lin: J. Power Sources Vol. 112 (2002), pp.174-183.

[4] X.G. Zhang: Corrosion and Electrochemistry of Zinc (Plenum Press, New York 1996) p.373.

[5] MARTIN G. PEREZ: J. Appl. Electrochem. Vol. 37 (2007), pp.225-231.

[6] D.Y. Qu: Electrochem. Communications Vol. 8 (2006), pp.1527-1530.

[7] T.S. Lee: J. Electrochem. Soc. Vol. 122 (1975), p.171.

[8] Y. Ein-Eli, M. Auinat and D. Starosvetsky: J. Power Sources Vol. 114 (2003), pp.330-337.

[9] Y. Ein-Eli and M. Auinat: J. Electrochem. Soc. Vol. 150 (2003), p. A1606-A1613.

[10] Y. Ein-Eli: Electrochem. and Solid-State Lett. Vol. 7 (2004), p. B5-B7.

[11] Y. Sato, M. Takhashi, H. Asakura, T. Yoshida, K. Tada and K. Kobayakawa: J. Power Sources Vol. 38 (1992), p.317.

[12] M. Yano, S. Fujitani, K. Nishio, Y. Akai and M. Kurimura: J. Power Sources Vol. 74 (1998), p.129.

[13] A. Miura, K. Takata, R. Okazaki, H. Ogawa, T. Uemura, Y. Nakamura and N. Kasahara, Denki Kagaku oyobi Kogyo Busturi Kagaku 57 (1989) p.459.

[14] D.C.H. Nevision, J.R. Davis, J.D. Destefani and T.B. Zorc: ASM Handbook: Casting, Vol. 15, (ASM International, Materials Park, OH, 1998) p.788.

[15] R.M. German: Powder Metallurgy Science (Metal Powders Industry Federation, Princeton, NJ, 1994) p.28.

[16] L.Z. Wang: Design of Chemical Power, (Chemical Industry Press, China 2008), p.51.

[17] M.C.H. McKubre and D.D. Macdonald: J. Electrochem. Soc. Vol. 128 (1981), pp.524-530.

[18] H.X. Yang, Y.L. Cao, X.P. Ai and L.F. Xiao: J. Power Sources Vol. 128 (2004), p.99.

In order to see related information, you need to Login.