Preparation of Mullite Nanocomposites Powders from Coal Fly Ash via Hydrothermal Crystallization


Article Preview

Mullite nanocomposites powders have been successfully synthesized from high-aluminium coal fly ash via hydrothermal crystallization process. The mullite nanocomposites powders are investigated and charactered by laser particle size analysis, BET surface area analysis, X-ray diffraction (XRD) analysis, transmission electron microscopy (TEM) analysis, selected area electron diffraction (SAED) analysis and energy-dispersive X-ray (EDX) analysis. Moreover, the reaction mechanism is speculated according to MAS-NMR results. The experimental results show that mullite nanocomposites powders can be prepared at 80-90 °C for 3 h with NaOH concentration of 2-4 mol/L and L/S ratio (liquid/solid ratio in mass) of 10 mL/g. The powder size of D50 is about 1.88-3.27 mm. Mullite nanocomposites are mainly rod-like, acicular and fibroid in shape with an range of 30-80 nm in length and an range of 4.5-30 nm in diameter. MAS-NMR analysis indicates that the nano-size mullite grow around the central atom-Al, Si of [AlSi]O4 tetrahedral and the growth unit Al[OH]4- is existed in this process definitely.



Advanced Materials Research (Volumes 250-253)

Edited by:

Guangfan Li, Yong Huang and Chaohe Chen






L. X. Tong et al., "Preparation of Mullite Nanocomposites Powders from Coal Fly Ash via Hydrothermal Crystallization", Advanced Materials Research, Vols. 250-253, pp. 3313-3319, 2011

Online since:

May 2011




[1] B.M. Kim, Y.K. Cho, S.Y. Yoon, R. Stevens, H.C. Park: Ceram. Int. Vol. 35 (2009) , p.579.

[2] J. S. Jung, H. C. Park, R. Stevens: J. Mater. Sci. Lett. Vol. 20 (2001) , p.1089.

[3] S. Gustafsson, L.K.L. Falk, J.E. Pitchford, W.J. Clegg, E. Lidén, E. Carlström: J. Eur. Ceram. Soc. Vol. 29 (2009), p.539.

[4] N.C. Chen, D. Chen, D. Dong: J. Chin. Ceram. Soc. Vol. 34 (2006) , p.975.

[5] N.C. Chen, D. Chen, W.X. Xu, F.P. Xu: J. Chin. Ceram. Soc. Vol. 35 (2007) , p.101.

[6] H.M. Ao, N.C. Chen: Non-Metallic Mines, Vol. 31 (2008) , p.12.

[7] N.C. Chen, D. Chen: K. Eng. Mater. Vol. 280-283 (2005) , p.1157.

[8] D. Jia, Y.Y. Wang, Y.L. Ma, F. Gao: IM &P. Vol. 03 (2005), p.10.

[9] Y.Y. Wang, Z. Ma, Y.N. Qin: Chin. J. Chem. Phys. Vol. 14, 02(2001), p.216.

[10] Y.M. Park, T.Y. Yang, S.Y. Yoon, R. Stevens, H.C. Park: Mater. Sci. Eng. Vol. 454-455(2007), p.518.

[11] J.R. Xue, Z.L. Wang, H. Gao: J. AuHui University. Sci. Tech. (Nat. Sci. ) Vol. 26(2006), p.58.

[12] X.H. Zhang, H.S. Luo, W.Z. Zhong: Sci. Chin. Ser. E Tech. Sci. Vol. 34 (2004), p.241.

[13] W.J. Li, E.W. Shi, W.Z. Zhong, Z.W. Yin: J. Cryst. Growth, Vol. 203 (1999), p.186.

In order to see related information, you need to Login.