Lead-Free BSZT/Epoxy 1-3 Composites for Ultrasonic Transducer Applications

Abstract:

Article Preview

With high piezoelectric coefficient (d33> 300 pC/N) and electromechanical coupling factor (kt = 0.45), lead-free barium strontium zirconium titanate ((Ba0.95Sr0.05) (Zr0.05Ti0.95) O3, abbreviated as BSZT)was used to fabricate BSZT/epoxy 1-3 composites with different volume fractions of BSZT ranging from 0.55 - 0.85. The electromechanical properties of the 1-3 composites were determined by the resonance technique. It was found that the theoretical modeling of the 1-3 composites matches quite well with the measured material properties.The 1-3 composite with f = 0.65 was chosen to be fabricated as a transducer due to its comparatively high value of kt. The BSZT/epoxy 1-3 composite transducer demonstrates large bandwidth with good sensitivity, suggesting high potential in biomedical applications.

Info:

Periodical:

Edited by:

Lynn Khine and Julius M. Tsai

Pages:

90-93

Citation:

S. T. F. Lee et al., "Lead-Free BSZT/Epoxy 1-3 Composites for Ultrasonic Transducer Applications", Advanced Materials Research, Vol. 254, pp. 90-93, 2011

Online since:

May 2011

Export:

Price:

$41.00

[1] M. D. Maeder, D. Damjanovic, N. Setter, Lead free piezoelectric materials, J. Electroceramics 13 (2004) 385-392.

DOI: https://doi.org/10.1007/s10832-004-5130-y

[2] Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, M. Nakamura, Lead-free piezoceramics, Nature 432 (2004) 84-87.

DOI: https://doi.org/10.1038/nature03028

[3] K. K. Shung, M. Zipparo, Ultrasonic transducers and arrays, IEEE Engineering in Medicine and Biology 15 (1996) 20-30.

[4] F. S. Foster, C. J. Pavlin, K. A. Harasiewicz, D. A. Christopher, D. H. Turnbull, Advances in ultrasound biomicroscopy, Ultrasound in Medicine and Biology 26 (2000) 1-27.

DOI: https://doi.org/10.1016/s0301-5629(99)00096-4

[5] R. B. Liu, K. A. Harasiewicz, F. S. Foster, Interdigital pair bonding for high frequency (20-50 MHz) ultrasonic composite transducers, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 48(1) (2001) 299-306.

DOI: https://doi.org/10.1109/58.896143

[6] H. Takeuchi, H. Masuzawa, C. Nakaya, Y. Ito, Medical ultrasonic probe using electrostrictive-ceramics polymer composite, IEEE 1989 Ultrasonics symposium: proceedings 1-2 (1989) 705-708.

DOI: https://doi.org/10.1109/ultsym.1989.67077

[7] C. G. Oakley, W. Huebner, K. Liang, Design considerations for 1-3 composites used in transducers for medical ultrasonic-imaging, 1990 IEEE 7th International symposium on applications of ferroelectrics (1990) 233-236.

DOI: https://doi.org/10.1109/isaf.1990.200231

[8] W. A. Smith, Calculating the hydrophone response of piezoceramic-rod piezopolymer-matrix composites, IEEE 1990 Ultrasonics symposium: proceedings 1-3 (1990) 757-761.

DOI: https://doi.org/10.1109/ultsym.1990.171467

[9] IEEE Standard on Piezoelectricity, ANSI/IEEE Std. 176, (1987).

[10] H. L. W. Chan and J. Unsworth, Mode coupling in modified lead titanate/polymer 1-3 composites, J. Appl. Phys. 65 (1989) 1754-1758.